Chapter 8

Corrective Adaptive Logics

Blaming all triviality on inconsistency seems a mistake. I shall present
corrective adaptive logics that are not or not only inconsistency-adaptive.
These allow for gluts or gaps (or both) with respect to all (as well as
several) logical symbols. All basic such logics will be reviewed. I shall
also outline variants as well as the combined adaptive logics built from the
aforementioned corrective adaptive logics. A very different matter is the
topic of Section 8.3: a particular ambiguity-adaptive logic. It allows for
ambiguous non-logical symbols but handles them adaptively, minimizing
ambiguities. A fascinating result, presented in Section 8.4, is that all these
forms of adaptation may be combined. This leads to an adaptive logic that
has an empty lower limit logic—nothing follows from any premise set, no
logical or non-logical symbol has any definite meaning. Nevertheless, the
adaptive logic is a useful and fascinating tool. A more general result,
presented in Section 8.6, is a criterion for separating corrective adaptive
logics in flip-flop logics and others.

8.1 Not Only Inconsistency-Adaptive Logics

Most contemporary (first-order) theories, whether mathematical or empirical,
can be seen as having CL as their underlying logic. Most earlier theories may
be sensibly interpreted similarly. Yet, as was explained in Section 2.1, some of
these theories turned out to be trivial if taken literally. How should one proceed
in such situations? The advice given in Section 2.1 was to interpret such theories
as consistently as possible, and next to try removing the inconsistencies. But
this is not the only possible way to proceed.

Classical logicians seem mesmerized by negation. Whenever a theory turns
out to have no CL-models, they analyse the situation as an inconsistency: for
some formula A, the theory requires that both A and —A are true. Paraconsis-
tent logicians seem equally mesmerized by negation. Whenever a theory turns
out to have no CL-models, paraconsistent logicians argue that this shows that
one needs models in which, for some A, both A and —A are true. As announced,
other approaches are possible.

We have seen, in Section 2.2, that the CL-clause for negation may be seen
as consisting of the consistency requirement

if vpr(A) =1 then vy (-A4) =0
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which rules out negation gluts—for some A, both A and —A are true—and the
(negation-)completeness requirement

if vpr(A) =0 then vy (—A4) =1

which rules out negation gaps—for some A, both A and —A are false. Both
classical logicians and paraconsistent logicians concentrate only on negation
gluts. Classical logicians identify the triviality of a theory with the presence
of negation gluts, whereas paraconsistent logicians stress that some theories
display negation gluts without being trivial.

Consider the set {p, =——p}. According to CLuN, this set has three kinds of
models: (i) those in which p, —p, and ———p are true and ——p is false, (ii) those
in which p, =—p, and ———p are true and —p is false, and (iii) those in which p,
—p, =p, and ~——p are all true. If, however, one allows for negation gaps, there
are models in which p and ———p are true, whereas —p and ——p are false. Such
models ‘explain’ the problem just as well as the aforementioned CLuN-models.
If the negation-completeness requirement is dropped, both —p and ——p may be
false, which allows p and =——p to be true.

The logic which is a ‘counterpart’ of CLulN but allows for negation-gaps
rather than negation gluts will be called CLaN—it is just like CL except that
it allows for gaps with respect to negation. Its indeterministic semantics is
obviously obtained by dropping the negation-completeness requirement from the
CL-semantics. Its deterministic semantics and axiomatization will be spelled
out below.

Consider a theory T that had CL as its underlying logic but turns out to
be trivial. Suppose moreover that T has CLalN-models and hence that one
may remove its triviality by replacing the underlying logic CL by CLaN. The
result, call it 7", is a negation-incomplete theory. By the same reasoning as was
used in Section 2.1, T” is too weak in comparison to what T was intended to be.
So we shall want to interpret the negation-incomplete T” as negation-complete
as possible. In other words, we shall want to minimize the negation gaps. To
do so, we have to go adaptive.

Going adaptive requires, according to the standard format, a lower limit
logic, a set of abnormalities, and a strategy. The lower limit logic is obviously
CLaN and the strategy is Minimal Abnormality or Reliability. What is the
set of abnormalities? Clearly, the kind of formulas we want to consider as false
unless the premises require them to be true. Clearly we want AV —A to be true
unless the premises require it to be false. However, we need formulas that will
be considered as false unless the premises require them to be true. The presence
of the classical logical symbols enables one to express this: the abnormalities
will be the formulas of the form (A V —A).

If we need to use classical logical symbols anyway, there is a more transparent
way to characterize the abnormalities. Consider a CLaN-model in which both
A and —A are false. Instead of saying that the model verifies <(AV—A), we may
just as well say that it verifies “A A <—A. In CLaNN, the standard negation has
the same meaning as the classical negation. I use the classical negation in the
present context in view of the convention from Section 4.3. Actually, the use of
classical negation in the present context will prove very handy in the sequel of
this section.

The formula <A A <= A nicely expresses what we mean by an abnormality
in the present context: A is false in the model and —A is also false in it. And
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there is another instructive reading: the model verifies <A but falsifies —A.
This clearly expresses a negation gap: the classical negation of A is verified but
the standard negation of A is not. So the standard negation displays a gap. Of
course, abnormalities have to be existentially closed for the predicative level. So
we define Q = {3(=A A =-A) | A € F.}.

It is instructive to check what becomes of the CLuN-abnormalities if the
same transformation is applied to them. Before, the CLuN-abnormalities were
defined as Q@ = {I(AAN-A) | A € F,}. It is just as good to define them as
Q= {3(==AA-A) | A € F,}. The form of these abnormalities clearly indicates
a negation glut. Applied to models: the model falsifies the classical negation of
A but nevertheless verifies the standard negation.

Let me reassure the suspicious reader that one obtains the same logics
CLuN" and CLuN™ if one defines Q = {3(==A A -A) | A € F,}. For exam-
ple whenever a model verifies 3(==A4 A =A) for some A, it verifies 3(A A —A)
for the same A; and wvice versa. Whenever the first formula is derivable from
a premise set for an A, so is the second formula for that A; and wice versa.
The original formulation has the advantage that abnormalities are expressed in
the standard language. What is attractive about the reformulation, however, is
that we now have a unified way to characterize negation gluts and negation gaps
and that this characterization is transparent. Moreover, this approach may be
generalized to all logical symbols.

Consider another example, the premise set {p,q,—(p A ¢)}. At first sight,
handling this sets seems to require that one allows for inconsistencies, in other
words for negation gluts. But suppose we have models with conjunction gaps:
the classical conjunction of A and B is true, but their standard conjunction is
false. So the abnormalities will have the form 3((A A B) A =(A A B)).! If a
model of {p,q,—(p A q)} allows for conjunction gaps, it will verify p and ¢, and
hence also p A g, but it may falsify p A ¢, in which case it verifies < (p A q) as well
as (if there are no gaps for the standard negation) —(p A ¢). In other words, the
premise set {p,q, =(p A ¢)} does not require paraconsistent models. It has just
as well models of logics that allow for conjunction gaps, even if they allow for
no other gluts or gaps.

Some premise sets are even more amusing. Consider {p,r, gV —r,(p A1) D
q}. This clearly has no CL-models. It has models if one allows for negation
gluts, but also if one allows for conjunction gaps, or for disjunction gluts, or for
implication gluts. In general, for every gap or glut with respect to any logical
symbol, there are premise sets that have no CL-models but have models of the
logic that allows just for such gluts or gaps.

I claimed that classical logicians and paraconsistent logicians are both mes-
merized by negation gluts. There is an easy historical explanation for this: all
gluts and gaps surface as inconsistencies if CL is applied to the premise set.
Thus, if CL is applied to {p, ~——p}, one obtains the inconsistencies p A —p
and —p A ——p (as well as all others of course). Similarly if CL is applied to
{p,q,—(p A q)}. The situation is exactly the same for any other gluts and gaps.
In all cases an inconsistency surfaces when one applies CL.

That all gluts and gaps surface as inconsistencies makes it understandable
why there was and is ample interest in paraconsistent logics, but much less

1T add the existential closure because a model verifying 3z((Pz A Qz) A=(PxAQz)) verifies
a conjunction gap even if it does not verify any instance of that formula.
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in logics that display other kinds of gluts or gaps (or both). Nevertheless, it
seems to me that it is a mistake to concentrate on consistency only. Remember
that the plot behind inconsistency-adaptive logics was to localize and isolate the
problems displayed by a theory or premise set and to do so in order to remove
those problems. Inconsistency-adaptive logics always identify disjunctions of
inconsistencies as the problems. Suppose one chooses a logic L that allows for
other kinds of gluts or gaps and that one applies an adaptive logic that has L
as its lower limit. Other formulas may then be identified as the problems and
often there is quite some choice, as in the case of {p,r,—qV —r,(p A q) D q}.
Although Dab-formulas will be derivable for every choice, the Dab-formulas
will be different. So different problems have to be resolved if one wants to
regain consistency, whence different consistent alternatives are suggested. From
a purely logical point of view, it is sensible to consider all possibilities. Some
choices of gluts or gaps may cause less ‘problems’ than others. Moreover, there
may be extra-logical reasons to prefer certain consistent alternatives over others.

I shall now describe the basic logics that allow for gluts or gaps in comparison
to CL. Combinations of different kinds of gluts or gaps will be considered
thereafter, but it is easier to mention the combination of gluts and gaps of the
same kind from the very beginning.

Devising the basic logics, one may proceed in a systematic way. All clauses
of the CL-semantics concern a ‘basic form’: schematic letters for sentences,
primitive predicative expressions, and the forms characterized by a metalinguis-
tic formula that contains precisely one logical symbol, identity included. Each
of these clauses may be split into two implicative clauses. The consequence of
one of the implicative clauses states the condition that causes formulas of the
form A to receive the valuation value 0. This implicative clause rules out a kind
of gluts. The consequence of the other implicative clause states the condition
that causes formulas of the form A to receive the valuation value 1. This rules
out gaps of a particular kind. So obtaining the basic logics is straightforward.

Consider first gluts for a particular logical form A. Each of the logics de-
scribed below allows for a single kind of gluts, and does not allow for any gaps.
The indeterministic semantics is obtained by removing from the CL-semantics
the implicative clause that has vy (A) = 0 as its implicatum. In order to il-
lustrate the naming scheme, I shall list all glut variants, including gluts for
sentential letters and for primitive predicative expressions.? In view of what
precedes, the names of the logics are self-explanatory, except perhaps the use of
“M” for material implication (because I need the “I” for identity) and the use of
“X”, the second letter of “existential” (because I need the “E” for equivalence).

2These cause trouble on which I shall comment later in the text.
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logic removed implicative clause

CLuS | where A € S, if v(A) =0 then vy (A) =0

CLuP | if (v(ay),...,v(e)) ¢ v(7") then vy (7" ... a) =0
CLul | if v(a) # v(B) then vy (a=0) =0

CLuN | if vpr(A) =1 then vy (-A4) =0

CLuM | if vpr(A) =1 and vy (B) =0, then vy (A D B) =0
CLuC | if vpr(A) =0 or vy (B) =0, then vy (AAB) =0
CLuD | if vp(A) =0 and vp(B) = 0, then vy (AV B) =0
CLuE | if vp(A) # vp(B), then vy (A= B) =0

CLuU | if {up(A(B)) | B € CUO} # {1}, then vy (VaA(a)) =0
CLuX | if 1 ¢ {vpm(A(B)) | B € CUO}, then var(3aA(a)) =0

Each of these logics has a deterministic semantics. This requires a clause
of the form "wp(A) = 1 iff [condition]”. This clause is obtained from the
CL-semantics by or-ing the condition of the standard clause with the correct
reference to the assignment value: “v(A) =1”. T again list all the logics.

logic replacing clause

CLuS | where Ae S, vy(A)=1iff v(A)=1orv(d) =1
) or

CLuP | vy (r"a;...qp) =1iff (v(a1),...,v(a)) € v(7"
v(r"or .. oap) =1

CLul | vy(a=08)=1iff v(a) =v(8) orv(a=p)=1

CLuN | vy (mA) =1iff vy (A) =0or v(-4) =1

CLuM | vy (AD B)=11iff (vy(A)=0o0rwvy(B)=1)orv(ADB)=1
CLuC | vy(AAB)=1iff vy(A)=1and vy (B)=1orv(AAB)=1
CLuD | vy (AvB)=1iff v (A)=1orovy(B)=1orv(AVB)=1
CLuE | vy(A=B)=1iff vy(A)=vy(B)orv(A=B)=1

CLuU | vy (VaA(e)) =1 iff {uy(A(B)) | B €CUO} ={1} or
v(VaA(a)) =1
CLuX | vy (JaA(a)) =11iff 1 € {vp(A(B)) | B € CUO} or v(FaA(a)) =1

Needless to say, all other clauses of the CL-semantics are retained.

Some readers may worry at this point. Is it really obvious that the indeter-
ministic semantics defines the same logic as the deterministic semantics? It is.
Please check the proof outline of Theorem 2.2.1. This is easily adjusted for any
logic mentioned in the last table.

Nearly all glut-logics have nice adequate axiomatizations in W,. For CLuC,
for example, it is sufficient to remove from the axiom system of CL the axioms
AALl and AA2, and to attach to A=2 the restriction “provided A(a) € WP”,
just as we did for CLuN in Section 2.2. However, as the reader will have seen,
this way of proceeding gets us into trouble when we come to implication gluts.
As, later on, I have to consider combinations of gluts and gaps, the trouble will
spread.

A different road is possible, and it is instructive. Consider the axiom system
of CL, replace in every axiom and rule every standard symbol by the corre-
sponding classical symbol, and attach to axiom schema A=2 the restriction
that A € W53 Call this axiom system CLC.* Next add, for every logical sym-
bol, the axiom that gives the standard symbol the same meaning as the classical

3Remember that the members of Wj contain only classical symbols and no standard ones.
4This is an axiom system for CL. The restriction on A=2 causes no weakening because
one may derive the original version of A=2 for all members of Wjs.
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symbol—example: A = < A. So all standard symbols have their CL-meaning
in CLC. To obtain an axiomatic system that allows for gluts with respect to
a specific logical form A, remove the relevant equivalence and replace it by a
glut-tolerating implication. I do not list all of them as they are all similar.
Gluts with respect to sentential letters and primitive predicative formulas will
be commented upon below.

logic axiom
CLul |a=8Da=0
CLuN | “A D -4

CLuX | 3aA(a) D 3aA(a)

So the matter is utterly simple. As the standard symbol may display gluts,
the formula containing the standard symbol is logically implied by the formula
containing the corresponding classical symbol, but not vice versa.

Note that these axiom systems agree with the convention from Section 2.5:
no classical symbol occurs within the scope of a standard symbol. Note also the
direct relation between the implicative glut-tolerating axiom and the relevant
retained clause in the indeterministic semantics. Just as CLul contains the
axiom a = 3 D a = [ and not its converse, the indeterministic CLul-semantics
contains the clause “if v(a) = v(B) then vy (e = B) = 1”7. Note that the an-
tecedent of the clause, v(a) = v(8), is the semantic definition of the antecedent
of the axiom, a = [.

As I promised, I now comment on the logics CLuS and CLuP. No axiomatic
system for CLuS is provided by the previous paragraphs. There is no need to
do so, as it is obvious from the deterministic semantics that CLuS is identical
to CL. So I shall never refer to it again by the funny name CLuS.

For CLuP the matter is more complicated. Again, no axiomatic system for
it is provided in the previous paragraphs. CLuP does have a decent axiomati-
zation, but its peculiarities are even incompatible with CLC. To see this, it is
sufficient to realize (i) that vas (7" ... @) may be 1 because v(7"ay ... ) = 1,
even if (v(aq),...,v(a,)) ¢ v(r") and (ii) that v(ay) = v(8) does not warrant
that vy (7" Bas ... ap) = vy (7 aras ... a,). The axiomatization of CLuP re-
quires that one starts from the axiomatic system for CL in the language L;
but with A=2 removed. Next every standard symbol should be given the same
meaning as the classical symbol. The result is an odd logic in which even the
classical symbols do not have the right meaning. So no adaptive logic will be
built on this logic.?

We are done with the basic logics for gluts and can move on to logics that
allow for one kind of gaps. Their indeterministic semantics is obtained by re-
moving from the CL-semantics the implicative clause that has vy (A) = 1 as
its implicatum. All these logics will have a lower case “a’, referring to the
possibility of gaps, where their glut-counterparts have a lower case “u”. By
now, I suppose that the reader understood the plot and skip most of the logics,

5The attentive reader may have remarked that variants for CLuS and CLuP may be
devised in which one explicitly distinguishes between the classical meaning of sentential letters
and predicates, denoted for example as p and Pa, and the standard meaning of such entities,
denoted by p and Pa. On the semantics, p = p and Pa D Pa are valid, but not the converse
of the latter. I shall not pursue this road here.
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except that I include gaps for sentential letters and for primitive predicative
expressions—these will be commented upon below.

logic removed implicative clause

CLaS | where A € S, if v(A) =1 then vy (A) =1

CLaP | if (v(ai1),...,v(a)) € v(n") then vy (7" ... ) =1
CLal | if v(a) =v(8) then vy (a=0) =1

CLaN | if vpr(A) = 0 then vp(mA) =1

CLaX | if 1 € {var(A(8)) | B € CUOY, then var(3ad(a)) = 1

Each of these logics has a deterministic semantics, which requires a clause
of the form ”wvps(A) = 1 iff [condition]”. This clause is obtained from the
CL-semantics by and-ing the condition of the standard clause with the correct
reference to the assignment value: “v(A) =17.

logic replacing clause

CLaS | where A€ S, vy (A) =1iff v(4) =1 and v(A) =1
CLaP | vy (n"ay...ap) =1 iff (v(ay),...,v(a)) € v(n") and
v(rTay .. ap) =1

CLal | vy(a=0)=1iff v(a) =v(8) and v(a=0) =1
CLaN | vy (—A) =1iff vpr(A) =0 and v(—A4) =1

CLaX | vp(3aA(a)) = 1iff 1 € {va(A(B)) | B €CUO} and
v(3al(a)) =1

As for the glut-variants, all other clauses of the CL-semantics are retained.
The way in which gaps are realized is fully transparent. Consider vy (—A) =
1. As this may be a negation glut, that vy (A) = 0 is necessary but not sufficient.
We need something more. The ‘something more’ is taken care of by requiring
that moreover v(—A) = 1.
For the axiomatization, I shall again follow the road taken for the glut-
allowing logics. Here are the axioms.

logic axiom
CLal |a=8>a=p
CLaN | -A D A

CLaX | 3aA(a) O JaA(a)

Again, the matter is utterly simple. As the standard symbol may display gaps
(and no gluts), the formula containing the classical symbol is logically implied by
the formula containing the corresponding standard symbol, but not wvice versa.
Again, all logical symbols for which no gaps are permitted are characterized by
an axiom stating that a formula containing the standard symbol is classically
equivalent to the corresponding expression containing the classical symbol.

Some will find the classical contraposition of the axioms more transparent,
for example “a = 3 D Sa =  for CLal. This also illustrates the direct
connection between the axiom and the corresponding retained clause of the
indeterministic semantics.
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I still have to comment upon CLaS and CLaP. No axiomatic system for
CLaS is provided above, and rightly so as it is obvious from the deterministic
semantics that CLaS is identical to CL. So I shall never refer to it again by
the funny name CLaS.

The logic CLaP is identical to CLuP and displays the same oddities. I shall
not refer to it in the sequel because this logic cannot function as an adaptive
logic in standard format.

Let us now move to the case where gluts and gaps for the same logical form
are combined. The names of the logics contain a lower case “0” to indicate that
both gluts and gaps are possible. For the indeterministic semantics, one removes
both the clause preventing gluts and the clause preventing gaps. This means
that one removes the CL-clause altogether.

logic removed implicative clauses
CLoS | where A € S, if v(A) =0 then va(A) =0
where A € S, if v(A) =1 then vp(4) =1
CLoP | if (v(aq),...,v(a)) ¢ v(n") then vy (7" ... ) =0
if (v(ar),...,v(a)) € v(n") then vy (7" ... ap) =1
CLol | if v(a) # v(f) then vp(a=5) =0
if v(a) = v(B) then vy (e =p) =1
CLoN | if vas(A) =1 then vp(—A) =0
if UM(A) =0 then vy (-4) =1
CLoX if 1 ¢ {vam(A(B)) | B € CUO}, then vy (FaA(a)) =0
if 1 € {up(A(B)) | B € CUOY}, then vy (FaA(a)) =1

The deterministic semantics is also simple: the truth-value of composing
formulas play no role whatsoever.

logic replacing clause

CLoS | where A € S, v (A) = v(A)

CLoP | vy(n"aq...ap)=1=v(r"as...q,) =1
CLol | vy(a=p0)=vla=0)=1

CLoN | vy (—A) = v(—A)

C.LOX UJ.VI(HaA(a)) = v(FaA(a))

The way to obtain the axiomatic system corresponds closely to the indeter-
ministic semantics: one removes the axiom concerning the symbol, for example
a = =a = for CLol. As a result, the standard identity does not occur in
any axiom of CLol, while all other standard symbols are identified with their
classical counterparts. The logic CLoS is again identical to CL, whereas CLoP
is the same logic as CLuP and CLaP.

It is obviously possible to formulate logics that allow for a combination
of gluts and gaps for different symbols. We may form names for such logics
by combining the qualifications that appear in the already used names. Thus
CLoNaM allows for negation gluts, negation gaps, and implication gaps. To
obtain, for example, the indeterministic semantics of CLoNaM, remove both
implicative clauses on negation, as it was done for CLoN, and moreover remove
the clause that prevents implication gaps. To obtain the deterministic semantics,



8.1. NOT ONLY INCONSISTENCY-ADAPTIVE LOGICS 277

one starts from the semantics for CLoIN and replaces the implication clause by
the implication clause from the CLaM-semantics. Similarly for the axiomatic
systems.

Note that there is a logic that allows for gluts and gaps with respect to all
logical symbols. Let us call it CLo. In this logic, no standard symbol is given
a meaning. So if I' € W, then Cn&p (I) = I. All this will seem of little
interest, unless one remembers the reason to consider all these logics, which is
to let them function as the lower limit of an adaptive logic. So let us have a
look at the adaptive logics.

As announced, I shall disregard the logics that (attempt to) display gluts
or gaps with respect to sentential letters or primitive predicative expressions.
For the other logics, the matter is simple. I have already described the lower
limits. To obtain adaptive logics in standard format, we need to combine those
with either Reliability or Minimal Abnormality as well as with the right set of
abnormalities. So all I have to describe are the sets of abnormalities and it was
outlined before in which way these are obtained. So the adaptive logics allowing
for one kind of gluts are the following.

LLL set of abnormalities €2

CLul | {3Fa=pAa=8)]a,fcCUV}
CLuN | {3(==AA-A)| Ac F,}

CLuM | {3(*(ADB)A(ADB))| A,Be F.}

CLuX | {3(>3aA(a) A Jad(a)) | A € )

And here are the adaptive logics allowing for one kind of gaps.

LLL set of abnormalities )

CLal | {3(a=pAxa=08)|a,BeCuUV}
CLaN | {3(=AA=-A) | A€ F,}

CLaM | {3(AD B)A=(ADB))| A,B € F,}

CLaX | {3(GaA(a) A =Fad(a)) | A € F.}

If the lower limit logic allows for gluts as well as gaps with respect to the
same logical symbol, the appropriate set of abnormalities is the union of two
sets of abnormalities: that of the corresponding logic allowing for gluts and
that of the corresponding logic allowing for gaps. Thus the appropriate set of
abnormalities for CLol is Q@ = {3(va = fAa =) | o, € CUV}IU {F(a =
BA=a=p)|a,p€CUV} and the appropriate set of abnormalities for CLoX
is {3(=JaA(a) AJaA(a)) | A € FIU{3IBaA(a) A=TaA(a)) | A€ F,}.

Handling logics that combine gluts or gaps for different logical symbols is just
as easy. The appropriate set of abnormalities is the union of the sets that contain
those gluts and gaps. Thus the appropriate set of abnormalities for CLoNaM
is Q= {I(=AA-A) | A € FIU{F(=AA-A) | A€ FIU{3((AD B)A=(AD
B)) | A, B € Fs}.

The appropriate set of abnormalities for CLo is obviously the union of all
sets of abnormalities mentioned (explicitly or implicitly) in the two preceding
tables. Incidentally, one may also use this union for all corrective adaptive logics
considered so far. Some abnormalities are logically impossible for certain lower
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limit logics, but these have no effect on the adaptive logic anyway—see Fact
5.9.8.

Let me summarize. In this section, the basic logics for handling gluts and
gaps with respect to one logical symbol were defined, together with all logics
that combine those gluts and gaps. For each of these logics, there is an ‘appro-
priate set’ of abnormalities. Combining such a logic with the appropriate set of
abnormalities and with the Reliability or Minimal Abnormality strategy results
in an adaptive logic in standard format. Note that CLuN™ and CLulN" are
such adaptive logics. There are many more and in view of the obvious naming
schema, it is at once clear what is meant by CLal”, CLoNaM™, or CLo".
These logics may be used as such, but may also serve other functions, as we
shall see in the next section.

8.2 Variants and Combinations

This section contains further comments on the adaptive logics presented in the
previous section. Three topics will be considered: variants of the lower limit
logics, including variants analogous to the inconsistency-adaptive variants de-
scribed in Sections 7.4 and 7.5, choosing among the adaptive logics from the
previous section for handling a given premise set, and combining the adaptive
logics. Some of the comments remain sketchy because I did not see the point of
describing them in more detail. Either the matter is obvious, or the elaboration
does not seem to engender any really new features.

The first topic concerns variants on the glut-logics and gap-logics. Four
kinds of variants will be briefly considered. A first type concerns the rule of Re-
placement of Identicals. With the obvious exception of CL, no logic presented
in the previous section validates this rule. However, all those logics have vari-
ants that validate Replacement of Identicals and leave the meaning of all other
logical symbols unchanged. The reader may easily construct those variants by
comparing CLulN with CLuNs from Section 7.2. For a different approach and
some more variation, I refer the reader to [VBCO0x].%

A very different kind of enrichment is related to the reduction of complex
expressions containing gappy or glutty symbols to simpler such expressions. It
is easy enough for the reader to devise the logic CLalNs, which relates to CLalN
in the same way as CLuNs relates to CLulN; similarly for CLoNs. It is not
difficult to find similar axiom schemas, and semantic clauses, for other logical
symbols. Take implication. Among the obvious candidates, in which I use at
once classical logical symbols for the sake of generality, are such equivalences
as(AD(ADB)=(ADB),((AVvB)DC)=((ADC)A (B DC)), and
(AD(BAC)) =((AD B)A(ADC)). There is no need to spell all this out
here.

The third kind of variant concerns the identification of abnormal objects.
This is handled in a way fully parallel to what was said in Section 7.5, except
that one starts from the abnormalities of the logic one wants to enrich, rather
than from existentially quantified contradictions. The matter is completely
straightforward. The fourth kind of variants is analogous to the enrichment
discussed in Section 7.4. This too is a rather obvious exercise. The basic

6The central point of that paper is that all those logics can be faithfully embedded in CL,
a fact which has dramatic consequences for the application of partial decision methods.
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change needed is that the table for a-formulas and b-formulas has to be adjusted
to the specific gluts or gaps of the enriched logic. If, for example, this is an
adaptive logic that has CLuM as its lower limit, then p O ¢ will be a member
of sp((pAT) D q).

Let us move to the second topic: choosing among the adaptive logics from the
previous section for handling a given premise set. I have commented upon this
choice in the previous section. Here, my main aim is to show that the dynamic
proofs may help one to pick the right choice. The idea is to start with a CLo™-
proof. Let us consider a simple example: T'y = {p,r, =gV —r, (pAr) D q,—pVs}.
I introduce the classical symbols step by step in order to make the proof fully
transparent.

1 p Premise 0
2 r Premise 0
3 —qV-or Premise 0
4 (pAT)Dyq Premise 0
5 -—pVs Premise )
6 —qV-or 3; RC {=(=qV =r)A (—~gV-r)} Ve
7 Sr 2; RC {==r A -} Ve
8 —q 6, 7; RU {5(=qV =r) A (~qV —r),==r A=r} 1O
9 -pVs 5; RC {=(-pVs)A(-pVs)}
10 =-p I; RC {==p A -p}
11 s 9,10; RU {=(-pVs)A(-pVs), " pA-p}
12 pAr 1,2; RC {pAr)A=s(pAr)} V1o
13 (pAT) Dy 4; RC {(=((pAT) D) AllpAT) D q)} vie
14 gq 12,13, RU  {=((pAr) D¢ AllpAr) D q),

(pAr) As(pAr)} v
15 =gq 8; RC {=(=qV =r) A (=g V —r),==r A —r

==q A =g} v
16 (S((pAr) S A((pAT) D)V ((PAT)AS(PAT)V

2(~g V') A (=g V 1)) V (351 A ) ¥ (55 A —q)

14,15;RD 0

The proof is constructed in such a way that a single abnormality is added to
the condition of every line at which RC is applied. These abnormalities are
a disjunction glut at lines 6 and 9, a negation glut at lines 7, 10 and 15, a
conjunction gap at line 12, and an implication glut at line 13. At line 16 I use
the derived rule RD, which was introduced in Section 4.4.

The last example proof provides us with an analysis of the situation: the
trouble is caused by the conditional CLo™-derivability of both ¢ and =¢. More-
over, it is obvious which gluts and gaps cause the conditional derivability of ¢
and =q. By choosing a lower limit which is stronger than CLo, and the set
of abnormalities suitable for this lower limit, it is possible to obtain a stronger
final consequence set.

The above CLo™-proof is easily transformed to a proof in terms of any of
the adaptive logics mentioned in the previous paragraph. To illustrate this,
and to illustrate at once the point from the previous paragraph, consider first
the familiar adaptive logic CLuN™. The difference between the CLo™-proof
and the CLulN"-proof is simply that all gluts and gaps are removed from the
conditions of the lines as well as from the only Dab-formula derived in the proof.
Here is the so obtained proof.
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1 p Premise )

2 7 Premise 0

3 gV oor Premise 0

4 (pAr)Dygq Premise 0

5 -—pVs Premise 0

6 gV -or 3; RU 0

7T Sor 2; RC {==r A -r} Ve
8 —q 6, 7; RU {==r A -} V16
9 -pVs 5; RU 0

10 ==p L; RC {==p A -p}

11 s 9,10; RU  {==pA —p}

12 pATr 1,2; RU 0

13 (pAT)Dyg 4; RU 0

14 ¢ 12, 13; RU 0

15 =g 8; RC {==r A -r,==qA-qt V'O
16 (55rA-r)V(55¢gA-q) 14,15 RD 0

It is useful to check the way in which the present proof is a transformation of the
preceding one. To maximally retain the parallelism, I did not remove the lines
at which classical disjunction and classical implication are introduced. These
are useless but cause no harm. Apart from the announced deletion of certain
formulas from the conditions and the Dab-formula, the only change is that RC
is replaced by RU where no CLuN"™-abnormality is introduced. Note that the
occurrence of a classical contradiction still leads to the Dab-formula 16.

There is a gain in the last example proof in comparison to the CLo™-proof:
q is finally derivable. It is easy enough to choose an adaptive logic from the
previous section that provides us with the opposite gain: that —g as well as
=q are finally derivable. Moreover, the CLo™-proof shows us the way. One
possibility is to allow only for conjunction gaps, in other words, to choose the
adaptive logic CLaC™. The proof then goes as follows.

1 D Premise 0
2 r Premise 0
3 —qV-or Premise 1]
4 (pAr)Dygq Premise )
5 -—pVs Premise 1]
6 —qV-or 3; RU 0
7 S 2; RU 0
8 g 6, 7; RU 0
9 —pVs 5; RU )
10 =-p 1; RU U
11 s 9,10; RU 0
12 pAr 1, 2; RC {pAr)As(pAr)} V1o
13 (pAT)Dyg 4; RU 0
14 ¢ 12, 13; RU  {(pAr)A=(pAr)} V1o
15 =gq 8; RU 0
16 (pAr)A=(pAr) 14,15 RD 0

Nearly the same effect is obtained by choosing CLuM™, which allows only for
implication gluts. In that proof, =((p A7) D ¢) A ((p Ar) D q) is the formula
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of line 16 and the singleton comprising this formula is the condition of lines 13
and 14, whence these lines are marked.

In the next to last proof, CLuN™ gives one ¢ as an unconditional conse-
quence. This is also the case if one chooses the logic CLuD™, which allows
for disjunction gluts only. Moreover, the CLo™-proof reveals that this is a se-
cure choice. Indeed, allowing for disjunction gluts causes -3¢ not to be a final
consequence of the premise set. So this avoids triviality.

What happens if one chooses the adaptive logic CLaN™?7 All conditions
become empty, so ¢ and =q are derived unconditionally and RD cannot be ap-
plied. Put differently, the formula of line 16 is turned into the empty string
by removing all ‘abnormalities’ that are not negation gaps. However, as we
derived a classical inconsistency, ¢ and =¢, and we derived it on the empty con-
dition, we obtain triviality. So CLaN™ does not lead to a minimally abnormal
‘interpretation’ of I'y.

It should be clear by now that CLo™ proofs offer an instrument for obtaining
the minimally abnormal interpretations of premise sets. Suppose that Dab-
formulas are only introduced by RD, as I advised some paragraphs ago. If no
Dab-formulas are derived in the CLo™ proof, the premise set is apparently
normal.” If that is so, its interpretation in terms of CL is normal. If Dab-
formulas are derived, a minimally abnormal interpretation of the premises is
obtained by choosing a lower limit that does not turn any Dab-formula into the
empty string. Note that some of these lower limit logics may combine different
gluts and gaps. The matter is completely straightforward. We can read off the
minimally abnormal interpretations from the CLo™ proof. In sum, constructing
proofs in CLo™ (or CLo") offers an analysis that allows one to decide which
adaptive logics from the previous section may be applied to handle a given
premise set, and which may not because they assign a trivial consequence set
to the premise set. The analysis also reveals which adaptive logics offer a richer
consequence set than others.

The logic CLo™ is also interesting in itself for a theoretical reason. Indeed,
in this logic, the meaning of all standard logical symbols is contingent: the
meaning of an occurrence of a standard symbol, and these are the only ones
that should occur in the premises and the (main) conclusion, depends fully on
the premise set. To put it in a pompous way: CLo™ provides one with a formal
hermeneutics—but see Section 8.4 for a more impressive result in this respect.

The story does not end here. Until now I have considered logics from the
previous section and have illustrated the way in which they lead to different non-
trivial but inconsistent ‘interpretations’ of an inconsistent theory. However, the
logics from the previous section may, in a specific sense, also be combined in the
sense of Chapter 6. I shall illustrate that this leads to further non-trivial but
inconsistent ‘interpretations’ of an inconsistent theory. This approach requires
some clarification before we start.

Let us consider the premise set I's = {p, 7, (pV ¢q) D s,(pVit) D —r,(pAr) D
=s,(p As) D t}. I shall not write out the CLo™-proof, but if one writes it
out, one readily sees that I's can be interpreted non-trivially by allowing for
disjunction gaps as well as for conjunction gaps. The CLo™-proof moreover
reveals that it may be interesting to first eliminate the disjunction gaps and

7T write “apparently” because the judgement concerns only the present stage of the CLo™
proof.
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next the conjunction gaps, something which typically may be realized by a
combined adaptive logic. The question is what this combined logic precisely
looks like.

The combination Cnéiacm(CnéiaDm (T'2)) would not have the desired ef-
fect. One the one hand, every conjunction of members of CnéiaDm (T'9) is itself
a member of that set because the standard conjunction behaves like the clas-
sical conjunction in CLaD. So closing Cn&$ 1. (T2) under CLaC™ does not
add any conjunctions. On the other hand, the standard disjunction behaves
like the classical disjunction in CLaC. This means that if A € I" and hence
A€ OnEs pn(T2), then AV B € Cn&y cn(CnEs pm(T2)) for every B. This
may very well cause triviality. The reader may easily verify this by reinterpreting
the subsequent proof from Ty as a proof for Cn&y cm (CnELapn (T'2))-8

What we need is rather obvious. We want to superimpose two simple adap-
tive logics that allow for disjunction gaps as well as for conjunction gaps, but we
want first to minimize the set of disjunction gaps and only thereafter the set of
conjunction gaps. So, following the naming scheme from the previous section,
we first need an adaptive logic composed of the lower limit logic CLaDaC, the
set of abnormalities Q = {3((AV B) A <(AV B)) | A,B € F,}), comprising
the disjunction gaps, and say Minimal Abnormality. One might call this logic
CLaDaC]},. Next, we want to close the consequence set of this logic by an
adaptive logic composed of the lower limit logic CLaDaC, the set of abnormal-
ities @ = {3((AAB)A=(AAB)) | A, B € F,}, comprising the conjunction gaps,
and Minimal Abnormality. One might call this logic CLaDaC/..

Let us move to the proof in this combined logic. All logical symbols have
their classical meaning with the exception of disjunction and conjunction. The
reader should remember from Chapter 6 that the first round of marking pro-
ceeds in terms of the minimal Dab-formulas that have disjunction gaps as their
disjuncts and are derived on the empty condition, whereas the second round
proceeds in terms of the minimal Dab-formulas that have conjunction gaps as
their disjuncts and are derived at an unmarked line the condition of which may
contain disjunction gaps. I try to make the proof more transparent by first
deriving the required disjunctions, applying CLaDaC},, and only thereafter
deriving the required conjunctions by applying CLaDaC...

1 p Premise 1]

2 r Premise )

3 (pVvg) Ds Premise 0

4  (pVvit)D-r Premise 0

5 (pAr)D-s Premise 0

6 (pAs)Dt Premise U]

7 pVg I; RC {(pVa)A=(pVa)}

8 s 3 RU - {(pVa@)AxpVa)}

9 pvt 1; RC {(pVt)A=(pVi)} i
10 - 4, 9; RU {(pVt)A=(pVi)} i
11 (pVt)A=s(pvit) 2,10;RD 0

12 pAr 1,2; RC {pAr)A=(pAT)} i
13 -s 5,12, RU  {(pAr)A=s(pAr)} v

8The disjunction p V t is CLaC-derivable from p and hence is derivable on the empty
condition in the so reinterpreted proof. But then so are both r and —r, whence triviality
results.
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14 (pAr)A=s(Ar) 813, RD  {(pVqg)A=(pVa)}
15 pAs L&RU  {(pVgA=(pVa),pAs)Ax(pAs)}
16 ¢ 6,15, RU  {(pVq@)A=(pVq),(pAs)A=(pAs)}

On line 14, the general form of rule RD is applied. The set of consequences of
the combined logic can be ‘summarized’ as {p,r,s,t,—~(p A7), (pV t)}. Note
that I write classical negation in the abnormalities in the proof to be coherent
with the rest of this chapter, but that the standard negation has the same
meaning. The same result cannot be obtained by any of the logics described in
the previous section. By using the superposition combination, (pV q) A =(pV q)
is not a disjunct of a minimal Dab-consequence of the premises, whereas it is
for example in CLuCaD™.

There may be specific logical or extra-logical reasons to ‘interpret’ I's in
terms of the combined adaptive logic. As mentioned before, such reasons may
become apparent, or the interpretation may be seen as a sensible alternative, in
view of a CLo™-proof from I's. Obviously, this is only an example. However,
the example shows the pattern to be followed: select the abnormalities one
needs or wants to allow for; choose a lower limit logic that allows for precisely
these abnormalities and combine them with the chosen strategy; finally, choose
an ordering of the abnormalities and superimpose the simple adaptive logics in
that order.

The upper limit logic of all simple adaptive logics presented in this chapter
is CL. So these logics, and all the combined adaptive logics built from them,
assign the same consequence set as CL to all premise sets that have CL-models.
While this is an interesting feature in itself, the interest of the diversity of the
logics lies with premise sets that have no CL-models.

8.3 Ambiguity-Adaptive Logics

In [Van97], Guido Vanackere presented the first ambiguity-adaptive logic. The
underlying idea is simple but ingenious. The inconsistency of a text may derive
from the ambiguity of its non-logical symbols. To take these possible ambiguities
into account, one indezes all occurrences of non-logical symbols. An ambiguity-
adaptive logic interprets a set of premises as unambiguous as possible. This is
realized by presupposing that two occurrences of a non-logical symbol have the
same meaning unless and until proven otherwise.

While the idea is simple and attractive, elaborating the technical details
requires hard work. Most published papers on ambiguity-adaptive logics evade
some unsolved problems. There is a reason why the matter is confusing. The
languages underlying ambiguity-adaptive logics may serve diverse, unexpected,
and attractive purposes. All purposes require a monotonic logic that is close
to CL, but many purposes demand that the logic deviate from CL in one or
other detail, and each purpose requires a different deviation. I now spell out a
systematic and sensible variant of ambiguity logic.

In the language L, the sets of schematic letters® for non-logical symbols are
S, C, V, and P" (for each rank r € N). Let us replace each of these sets with a
set of indexed letters, which comprise the letters from the original sets with a

9The name “letter” is slightly misleading. Most schematic letters are actually strings
composed from a finite sequence of symbols.
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superscripted index i € N attached to them. Thus ST = SU{\* | A € S;i € N},
and similarly for ¢/, V!, and P"!. The resulting sets are still denumerable.
From these sets we deﬁne a language £, with F! as its set of formulas and W!
as its set of closed formulas. The language Ll is exactly as one expects, except
that the quantifiers still range over the variables of Ls. The reasons for this
convention will be explained later on.

Next, we define a logic CLI over this language. The logic is almost identical
to CL, except for the way in which quantified formulas are handled. To phrase
the semantics, we need to add an indexed set O of pseudo-constants, which is
defined from O in the same way as C’ is defined from C. The resulting pseudo-
language £, has W} as its set of closed formulas. A CLI-model M = (D, v),
in which D is a set and v is an assignment function. The function v is like for
CL, except that the indexed sets are interpreted.

Cl v: W§ — {0,1}
C2 v:CtuO! = D (where D= {v(a)|acClu0Ol})
C3 v: Pl — (D7)

The valuation function vpr: W5 — {0,1} determined by M is defined as fol-
lows:

CST where A € ST, vy (A) =1iff v(A) =1
CPl where 7" € Pl and oy ..., € CT U o1,

vM(7r aq...ap) = 1iff (v(ay),...,v(a)) € v(r")
C=  wula=p)=1iff va) = v(d)
C— ’UM(ﬁ )—11&"1)1\4(14)—0
Co vpm(AD B)=1iff vpyr(A) =0o0r vy (B) =1
CA vpmM(AAB)=1iff vp(A) =1 and vy (B) =1
Cv vpm(AV B)=1iff vp(A) =1 or vy (B) =1
C= vy (A= B) =1iff vy (A4) =vm(B) 4
vl vy (VaA(ah,. ,af”)) =1iff {vm(A(B",....,087)) | B€CUO} = {1}
CH vy (FaA(ah, ... o)) =1iff 1 € {opm(A(B,...,3")) | B€CUO}

M I+ A iff vy (A) =1, which defines Fopr A as well as T' Fepr A.

The clauses CV and C3 deserve some clarification. Note that the quantifiers
range over o and that the o are indexed occurrences of this variable in A. As
was agreed before, quantifiers range over members of V whereas the variables
that occur in members of F5 are members of VI. Thus M I Va(Plz! > Q'2?)
holds iff M IF Pla! D Q'a? holds for all « € CU O. Similarly, M I 3z (Plzt A
Q'2?) holds iff M I+ Pla! A Q'a? holds for some o € C U O.

The behaviour of the quantifiers causes a connection between variables that
differ only from each other in their index, because the same quantifiers bind
them all. The quantifiers also connect indexed variables to the constants with
the same indices. Thus, among the semantic consequences of Vo (Plz! D Q'2?)
are Pla' D Q'a® as well as P'b' O Q'b?, but not, for example, Plal D Q'b?
or Pla' D Q'a®. We shall see later that this peculiar logic is tailored in order
to suit the ambiguity-adaptive logic of which it is the lower limit.

I leave it as an easy exercise for the reader to spell out an axiomatic sys-
tem for CLI. Hint: take the CL-axiomatization from Section 1.7, letting the
metavariables range over indexed entities; next adjust AV to VaA(a®, ..., ai")) D
A(B, ..., B"), and adjust A3, RV, and R3 similarly.
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The idea of (non-adaptive) ambiguity logics is that, where I' C W, and
AeW,, I' H Aiff a certain translation of A is a CLI-consequence of a certain
translation of I'. The presumably unexpected handling of the quantifiers will
be easier understood after I presented the translation. Let I'f be obtained from
I' by adding superscripted indices from an I C N to all non-logical symbols in
I" in such a way that every index occurs at most once. Next, let A' be obtained
from A by adding superscripted indices from N — I to all non-logical symbols in
A in such a way that every index occurs at most once.'® The ambiguity logic
CLA, defined over the language L, is defined by

IrFepa Aff T Forp AF.

In order to define CLA, we need only a certain fragment of CLI. For every
premise set I' and conclusion A, T'T U {A*} is a set of members of W! that
has a very specific property: all non-logical symbols are indexed and no two
occurrences of the same non-logical symbol have the same index. One of the
effects of this is that there are no I and A for which I't Ferr A¥, whereas there
obviously are I and A for which I' Fcpr A, for example p* A ¢% Fowt p.

At this point, the handling of the quantifiers should be more transparent.
We have A A B Fcra A. For example, p A g ¥coLa p because pt A ¢% Feorr p°—
in some CLI-models v(p') = v(¢?) = 1 and v(p®) = 0. But consider Vzz =
z A qFcLa Vexx = x. If the quantifiers ranged over the indexed variables, this
would come out true because V' 2! = z' A ¢% Fcrr V23 23 = 23,11 But then
quantified statements would behave oddly, because they would form classical
exceptions in the ambiguity logic.

Let us take a closer look at this. The point is actually related to theorems
of logic. Thus #cra pV —p because ¥crr p* V —p?. In general, CLA does not
have any theorems at the propositional level. Note that the absence of theorems
derives from the translation, not from CLI, which obviously has all the right
theorems, for example Fcry p' V —p'. When one moves to the predicative level,
CL-theorems turn out to be non-theorems of CLA. For example Fcpa a = a
because Ecry at = a? and Fora VePz O Pa because ¥orr YePlz? O P3a*—
note that, even if the quantifiers ranged over the indexed variables, we would still
have Fcr1 Vo?Pla? O P3a*. However, if the quantifiers ranged over indexed
variables, we would have Fcopa Ve z = x because Fory Vo' 2! = 2'—remember
that Vaz'z! = 22 is not a closed formula. So this would reintroduce logical
theorems at a unique specific point, which would be an anomaly. Actually,
letting the quantifiers range over the original variables causes no trouble, as the
CLI-semantics reveals. Indeed, there are CLI-models that verify Vo 2! = 22,
and there are that do not, just as we want it. So Focpa Vzx = x. Similarly
Vexr =z FoLa Yoz = z because Vo z! = 22 Forr Vo 23 = 2.

The reader may think that another approach is equally sensible: to let the
quantifiers range over indexed variables while multiplying the quantifiers where
this is necessary to obtain closed formulas. Thus the translation of Vxx = x
would be, for example, Vz!'Vz? 2! = 2. This, however, would not work. Indeed,
from this formula, one might first obtain Vz? a' = 2? and next a' = b%, which

)

100ther ways of indexing are equally adequate. As explained below in the text, every two
occurrences of the same symbol in I' U {A} should have different indices and no individual
variable should have the same index as an individual constant.

111f the quantifiers range over indexed variables, Va! z! = z2 is not a closed formula.
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would blur the difference between two very different formulas, Vxx = = and
VzVy x = y. By letting the quantifiers range over the non-indexed variables, we
guarantee that all indexed occurrences of the same variable are instantiated at
the same time.

The logic CLA is intriguing. Nothing is valid in it, nothing is derivable from
any premise set. Post-modernists should be pleased. Sensible people, however,
will regard CLA as a lower limit logic, and will try to minimize abnormalities.
They will admit that some texts (or premise sets) force one to consider some non-
logical terms as ambiguous,'? but they will also stress that non-logical terms
have to be considered unambiguous “unless and until proven otherwise”. In
other words, they will go adaptive.

It is not difficult to see what going adaptive comes to. The lower limit logic
will be CLI and the strategy either Reliability or Minimal Abnormality. We
need a set of abnormalities containing three kinds of formulas: ambiguities per-
taining respectively to sentential letters, to individual constants and variables,
and to predicative letters. In order to save some space in the examples proofs, I
shall introduce abbreviations for each of these kinds of abnormalities. Ambigu-
ities for sentential letters have the form —(A* = A7), with A € S and 4,j € N.13
These will be abbreviated as A%/, for example p®® abbreviates =(p® = p®). Am-
biguities for individual constants and variables will have the form 3- o = o7,
with o € CUV and 4,7 € N. These will be abbreviated as a’7, for example
a%" abbreviates = a® = a” and 2*® abbreviates Ix—z* = 28. Finally, ambi-
guities for predicative letters have the form 3-(7‘a; ... = 7y ... a;), with
7 €P, 4,5 €N, and ay...qa, € V. These will be abbreviated as m*/a; ...,
for example, where P35z! abbreviates Jz—(P32! = P°x!) and, where R € P3,
R?*8al2'b? abbreviates Jz—(R?a'2'b? = R8al2'b?).14

The meaning of the abnormalities requires hardly any clarification: differ-
ent occurrences of a symbol have different meanings. This is straightforward
for sentential letters, individual constants and individual variables. There is a
difference, however. Occurrences of the same constant may have different de-
notations. So it is possible that —a! = a2, =a' = a?, and —a? = a3, and
so on for any number of occurrences of the same constant. The matter is dif-
ferent for propositional letters. As there are (on the present approach) only
two truth-values, 0 and 1, the occurrence of p', p? and p> necessarily leads to
pt = p?, to p? = p', or to p> = p?. The case of predicative letters is slightly
more sophisticated. If both P'a? and —P3a? hold true, the object denoted by
a® belongs to the extension of P! but not to that of P3. In other words, P!
and P3 differ in extension with respect to the object denoted by a?. If moreover
both P'a* and —=P3a* hold true, there is a further ambiguity: P! and P also
differ in extension with respect to the object denoted by a*. This is the reason
why abnormalities pertaining to predicates require a more complex abbreviation
than the other abnormalities.

It is time to formally state the set of abnormalities. I shall do this in terms

121 obviously suppose here that the logical symbols have a unique and stable meaning.

I31f the intention is to combine ambiguity logics with logics from Sections 8.1 or 8.2, the
abnormalities are better phrased with the help of classical logical symbols.

4 The use of ambiguities in the variables is illustrated by Vo (P'z? = P324) o Jz—(2? =
x*) vV 3z— (P22 = P322?). Incidentally, =(p! = p?) and —(p? = p') are officially considered
as different (but equivalent) abnormalities. Similarly p!'? and p?'! are officially seen as ab-
breviations of different formulas. Both decisions are obviously purely conventional.



8.3. AMBIGUITY-ADAPTIVE LOGICS 287

of the introduced abbreviations: Q = {4 | A € 8;i,j € N;i £ j}U{a’ |a €
CUV;i,jeNyi#jYu{ray...a, | m € P50, €Ny ...a, € CEUVE i #
j}. When reading this, remember that all logical symbols have their classical
meaning. The adaptive logics CLI™ and CLI" are now fully defined.

In terms of CLI™, we define the logic CLA™:

I'teopam A ff TT Fepm A,

and similarly for CLA". I write the superscripts of CLA™ and CLA' in a
different type to indicate that these logics are not themselves adaptive logics in
standard format, but are characterized in terms of such logics.

Let us consider some example proofs. The premise set I's = {Va(Pz D
Qz), Pa} is normal. So the CLA™-consequence set (and CLA'-consequence
set) of I's is identical to its CL-consequence set, as the reader expected. Here is
an example proof of Qa € Cngy,am(I'3). This comes to Vz(Pa? D Q3x*), PPa’ Fopin

Q"a®.

1 Va(Plz? 5 Q32*) Prem 0

2 P58 Prem 0

3 Pla®>D Q3% 1; RU 0

4 Pla? 2; RC {P15a5,a%6}

5 Q% 3,4; RU {P'¥%aS a?6}

6 Qad 5: RC (P54, a%6,Q37a*, %8}

As {Vz(P2? D @Q3x*), PPa’} is normal with respect to CLI™, no Dab-formula
is derivable from it, whence no line is marked in any extension of the proof.
Some readers may find the proof a bit fast. Here is the trick, applied to
the transition from 2 to 4. The condition of line 2.1 is the negation of the
formula of that line. So the line results from the CLI-theorem (P%a® = P'a®)Vv
=(P%a% = P'a®). Similarly for line 2.3, which results from the CLI-theorem

a? =ab Vv —a? = a®.

2 P’ Prem 0

2.1 P%5=Pla® RC {P15q°}

2.2 Pla® 2,2.1; RU  {P'5a5}

23 a*=a° RC {a*®}

4  Plg? 2.2,2.3; RU {P¥ab a?6}

If predicative expressions are ambiguous, the ambiguity can lie with a pred-
icate, an individual constant, or a variable. This often leads to a disjunction
of such abnormalities. For example P'a?,=P3a* Fcprr —a? = a* v =(Pla* =
P3a*). This will be illustrated in the next example proof.

It is instructive to consider a further example: I'y = {Vz(Pz D Qu), Pa,
=Qa, Pb}. Its translation is, for example, {Vz(P'z? > Q3xz*), P?a® —~Q"a8,
P}, Let us check wether I'y Fopam Qa and T'y Feram Qb. As the indices
1-10 occur in the translation of I'y, the indexed conclusions will be, for example,
Q" a'? and Qb2 respectively.

1 V(P22 D> Q32?) Prem 0
2 P58 Prem 0
3 —Q7ad Prem 1)
4 P%!0 Prem 0
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5 Pla? > Q3%a* 1; RU 0
6 Pla? 2; RC {P15a5 %6} 1o
7 Q% 5,6; RU  {P1?aC a6} v
8 Qg2 7: RC (P55, 420, Q¥ 11at, q*12) /10
9 -Q3a* 3; RC {Q73a8, a®*} V1o
10 PY5aSva?SvQ™3a®va®* 7,9, RD 0

Apart from 10, many other Dab-formulas are derivable from the proof. For any
suitable i and j, Q%a’ is derivable from @Q3a* on the condition {P*®aS a?",
Q*%a* a7} and ~Q'a’ is derivable from Q7a® on the condition {Q7a®, a®7}.
So the disjunction of members of both conditions is CLI-derivable on the empty
condition. In whichever way one proceeds, the line at which Q''a'? is derived
will be marked; Q*'a'? is not a final CLI"-consequence of { P1®°a%, a?%, Q% 'a*,
a*7} and T'y ¥corar Qa.

The situation is obviously very different for Q''b'2. Let us have a look at
the continuation of the previous proof.

11 P2 5 @Q3%* 1; RU 0

12 P1b2 4’ RC {P1-9b10, b2-10}

13 Q3 11, 12; RU {P1910 p210}

14 Q11b12 13; RC {Pl'gblo,b2'10,Q3'11b4,b4'12}

None of these lines will be marked in any extension of the proof. The reason
is that the conditions of the lines contain only abnormalities that explicitly
mention b, whereas no such abnormality is CLI-derivable from {Vz(P!z? >
Q32*), P5a%,-Q"a®, PPb'%}. So Q'b'2 is a final CLI-consequence of the trans-
lated premise set and I'y Fepam Qb.

Some readers may wonder why the proofs contain no examples of abnormal-
ities that pertain to variables. This is partly a matter of style. For example,
the lines 11-14 of the last proof may just as well be replaced by the following
lines in which T also proceed a bit faster.

11 vl.(PQxlO D) Q111.12) 1, RC {P1-9x27 1'2'10, Q?rllxll7 x4~12}
12 P9b10 ) Q11b12 11: RC {P1-9x2 x2-10 Q3~11x4 x4~12}
13 Q11b12 4. 12: RC {P1~9x2 x2‘10 Q3~11x4 x4-12}

In other cases, for example in order to establish Va(Pz D Qu),Vz(Qx D
Rz) Feopam Yz(Px D Rx), abnormalities pertaining to variables are unavoid-
able, unless of course when dummy constants are introduced.

Before leaving the matter, two points are worth some attention. The first
concerns my promise to clarify the translation, the second concerns variants for
the present ambiguity-adaptive logics.

The translation is actually a simple matter. When describing it, I required
(in footnote 10) that no two occurrences of the same symbol receive the same
index and that no individual constant receives the same index as an individual
variable. The first requirement is obvious. That two occurrences of the same
symbol receive the same index amounts to declaring them to have the same
meaning. If ambiguities may be around, there is no logical justification for doing
so. The second requirement may be easily explained. Consider the premise
set {Vx Pz,—Pa} and note that Pa is derivable from the first premise. If,
for example, the first premise is translated as Vo P'z?, then P'a? is a CLI-
consequence of it. So there either is an ambiguity in P or there is an ambiguity
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in a. But suppose that the premise set were translated as {Vx Pla!, ~P%a'}—
this translation fulfils the first requirement but not the second. As Pla! is a
CLI-consequence of this, so is the abnormality P'2a'. But this is obviously
mistaken because it locates the ambiguity definitely in P, neglecting the possible
ambiguity in a.

Let us now move to variants. Actually, CLI and similar logics contain a
very rich potential—see for example [Bat02b] and [Batar] for applications that
have nothing to do with ambiguity-adaptive logic. However, also the ambiguity-
adaptive logics deserve further attention. A striking point concerns ambiguities
in sentential letters. As we have seen before, if there are three occurrences of
the same sentential letter, at least two of them ‘have the same meaning’. This is
so because having the same meaning is expressed by equivalence, there are only
two truth values, and equivalence is truth-functional. However, it is obvious
that the same sentential letter (or the same sentence in a natural language)
may be used with more than two different meanings. This suggests that one
tries to dig deeper into meaning. The meaning of a linguistic element may be
seen as composed from different elements. Some bunches of such elements may
actually be realistic, in that they occur in the language, whereas others are not.
Moreover, it is well-known that speakers often want to express something close
to, but slightly different from, a given realistic bunch and still use the same word
or phrase. An approach that allows for digging deeper into meaning is available
along these lines. Some work has been done on it. I cannot report on it here,
but address the reader to some relevant papers: [D’H02], [D’HO1], [Urbnt]

Before leaving the matter, an important proviso should be mentioned. Much
so-called ambiguity arises from the fact that many predicates are vague. Vague-
ness obviously cannot be adequately handled by means of CLA—pace [VKV03].
See [VvdWvG08] for a decent proposal to upgrade fuzzy logics adaptively.

8.4 Adaptive Zero Logic

In the previous sections, we met two extremely weak logics. The first was CLo,
in which no standard logical symbol has any specific meaning. We have seen
that A € W, is CLo-derivable from a premise set I' C W, iff A is a member
of I'. The second, even weaker logic, was CLA, in which every occurrence of
a non-logical symbol may have a meaning that is unrelated to any other such
occurrence. Recall that no A € W, is CLA-derivable from any premise set
I' € W,. It is not difficult to combine the weaknesses of both logics. I shall do
so and call the result CL(), in words zero logic. In zero logic, no symbol has a
fixed meaning. While zero logic in itself is utterly useless, it may function as
the lower limit of a very useful adaptive logic. The idea of zero logic and the
related adaptive logic was first presented in [Bat99d]. The paper is a bit clumsy
at some points and uses terminology that has now been replaced.

Defining CL{ is easy. For the semantics, replace all standard logical symbols
in the CLI-semantics by their classical counterparts and do not add anything
for the standard logical symbols. Let this logic be called CL{I. For its axiom-
atization, replace the standard logical symbols in the axiom system of CLI by
their classical counterparts (and do not add anything for the standard logical
symbols). From CL(I, define CL{ by

I'Fewg Aiff T Fopgr A,

cite: Stephan / mail zocken

anders formuleren
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in which { and I are as in Section 8.3. The logic CL{ is really useless. Even
the difference between logical and non-logical symbols is blurred. To be more
precise, the difference is obviously neat in the metalanguage, but nothing within
the logic reveals it. This is really the logic that suits the post-modernist. It also
shows that post-modernism, in its extreme form, is not viable. If, in a text, any
occurrence of any symbol can have whatever meaning, then nothing sensible
can be said about the text. Presumably CL@ is the logic present in our brains
before we start to learn our mother tongue. Only as this learning proceeds,
we start connecting words to entities in the world (things, actions, processes)
or to representations of such entities, and we start connecting logical terms to
operators. In doing so, we are forced to turn the connection into a probabilistic
and contextual one. I now move back to logic, but I shall have to return to this
point later.

The most straightforward adaptive logics that have CL{I as their lower limit
logic combine it with Reliability or Minimal abnormality and with a specific set
of abnormalities. This set is the union of two subsets: (i) the set containing
all formulas expressing gluts and gaps (as mentioned in the table at the end
of Section 8.1), and (ii) the abnormalities of CLI™, duly phrased in terms of
classical logical symbols. This gives us CLOI™ and CL@I". From these we
define

I Fepon A iff T Fepom AF.

and similarly for CL{)'.

I shall not present any example proofs in CLOI™. These are easy enough in
view of what was said in Sections 8.1 and 8.3. It is more important to comment
on the use of adaptive zero logic.

Every symbol, logical or non-logical, has a contingent meaning in CLOI™.
This means that the meaning of a specific occurrence of a symbol will depend on
the premises. Of course, there are presuppositions, laid down by the abnormal-
ities. Thus logical symbols are supposed to have their classical meaning, unless
and until proven otherwise. Different occurrences of non-logical terms are sup-
posed to have the same meaning, unless and until proven otherwise—the fact
that our logic is defined within a language schema causes these meanings to be
left unspecified.

If applied to abnormal premise sets, CLOI™ is a marvellous instrument of
analysis. It locates each and every possible explanation of the abnormality.
The idea here is as explained in Section 8.2, except that the present analysis is
richer: ambiguities in the non-logical terms are also considered. The analysis
will give rise to different abnormal but non-trivial theories, obtained by blaming
one kind of abnormality rather than another, or by blaming the abnormalities
in a certain order (combined adaptive logics).

If applied to a normal premise set, CLOI™ delivers the full CL-consequence
set. This is fully the merit of the adaptivity of the logic, because the lower
limit logic does not assign any meaning to any symbol. The lower limit logic
prescribes literally nothing about any symbol. In a sense, settling the meaning
of symbols has become an empirical matter.

The last statements from the previous paragraph should be qualified. It ob-
viously makes a difference which precise set of abnormalities is selected, because
this defines the normal interpretation of the symbols. A first choice that under-
lies CLOI™ is that the upper limit logic is CL. Some will want to replace this
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by a different ‘standard of deduction’. Next, the selected abnormalities are the
plain ones, bare gluts and bare gaps for the logical symbols and plain ambiguity
for the non-logical symbols. For the logical symbols, this may be modified to,
for example, the abnormalities described in Section 7.4, which require combined
logics.

By all means, the present results suggest a formal approach to the inter-
pretation of texts. The logic CLOTI™ forms a skeleton that may be given some
flesh. What should be added is basically a set of suitable suppositions about
the actual meaning of certain symbols, logical and non-logical symbols alike,
and contextual features should be taken into account. This is not the place to
expand upon the topic, but it seemed worth pointing out this possible line of
research. The reader will also note the connection with argumentation. Most
contributions to that domain are on the non-formal side and close to natural
language. CL(I™ provides an approach on the formal side and close to for-
mal languages. It seems to me that both approaches may work towards each
other—see (the old) [Bat96] for some first ideas on this.

8.5 Strength of Paraconsistency and Ambiguity

I have argued that each of the logics considered in this chapter lead, with respect
to some premise sets, to a different maximal consistent interpretation. Obvi-
ously, most of the logics trivialize some premise sets that have no CL-models.
Consider all logics from Sections 8.1 and 8.2. Whether the logic is adaptive or
not, the consequence set of {p, —p} is trivial unless negation is paraconsistent.
In this sense paraconsistency has a special status: it provides models for all
premise sets that have no CL-models.

Incidentally, many of the logics from Sections 8.1 and 8.2 are extensions of
CL. In many of those logics, some standard symbols have the same meaning
as the corresponding CL-symbols and other CL-symbols may be defined. This
is fairly obvious for most of the logics. Slightly unexpected might be that
~A =g A D A defines classical negation within CLalN, CLaNs, and so on.

Ambiguity logics share the strength of paraconsistent logics. Every I' C W,
even if it has no CL-models, has CLA-models.'®> Some paraconsistent logics
may even be defined in terms of ambiguity logics—I have shown in [Bat02b]
that this holds for LP and it is not impossible that a similar result holds for
all paraconsistent logics. Note that this is a technical point. A philosophical
point is that, even if all paraconsistent logics can be characterized in terms
of ambiguity logics, the interpretation of both types of logics is nevertheless
different. The question as to the precise meaning of negation should not be
confused with the question whether ambiguities occur in non-logical symbols.
In this respect, the philosophical tenet of David Lewis in [Lew82] is mistaken.
That a given text (or premise set) may be interpreted both ways is altogether
a different matter.

What should be concluded from the strength of paraconsistency and ambi-
guity? Not much as I see it. These approaches offer a road to a maximally
non-trivial interpretation of every premise set. However, if another logic pro-
vides also such a road for a given premise set, the latter road may be just as
sensible. Logics should offer ways for handling the CL-triviality of a theory T.

150bviously not every I' C W! has CLI-models.
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Which maximally non-trivial interpretation of 7" will turn out most interesting
will always depend on a non-logical considerations. As early as 1964, Nicholas
Rescher remarked in [Res64, p. 37]: “And while the recognition of ambiguity
does fall within the province of logic, its resolution is inevitably an extralogical
matter.” This holds for every cause of triviality.

8.6 Flip-flop Criteria

That some adaptive logics are flip-flops is annoying. Whenever one develops
a new adaptive logic, one has to show that it is a flip-flop, in case we want
one, or that it is not a flip-flop, in case it is not intended to be one. Especially
the latter task often requires a thorough study of the logic and next finding
a metatheoretic proof. So it is fortunate that a simple semantic criterion was
discovered. The criterion applies to simple adaptive logics. If the matter is
known for these, it is easy enough to figure out whether their combinations are
flip-flops. In its present form the criterion applies only to corrective adaptive
logics, but that is the difficult bit anyway.

The approach requires some preparation, viz. some alternative formulations
of the CL-semantics. The semantics from Section 1.7 will be called the clausal
semantics. Let us turn it into a tabular semantics by leaving the assignment
function unchanged, replacing the ten clauses specifying the valuation function
by the following ten tables—the last two are amalgamated.

Where A€ S: wv(A) | A
1 1
0 |0

Where oy, ..., 0, €CUOand € P (v(ay),...,v(an)),v(n) | may...an

€ 1
¢ 0
Where a,3€ CUO:  wv(a),v(B) |a=p
= 1
: |
| - AL 0 V|1l 0 D1 0 =|1 0
110 111 0 111 1 111 0 111 0
01 0/0 O 0[1 0 0|1 1 00 1

{oam(A(0)) |a € CUOY | Va(A(e)) | 3e(A(a))
{1} 1 1
{0,1} 0 1
{0} 0 0

We have seen that some logics display gluts or gaps or both. For them, I
shall articulate a semantics in which the valuation has the form vy;: Wo —
{t,u,a, f}, in which the values intuitively stand for true, glut, gap, and false.
Let us call this the tuaf semantics. A tuaf semantics may be two-valued, three
valued, or four valued, depending on the number of values needed. Another
important piece of information is that ¢ and u are the designated values. So
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a model M verifies A iff vp(A) € {t,u}. This settles at once the semantic
consequence relation I' F A.

In some logics no gluts occur, or no gaps. So there only two or three of
the values will be used. For example, the tuaf semantics for CL is boringly
isomorphic to CL’s tabular semantics: every 1 is replaced by t and every 0 by
f—why this is so will soon become clear. I spell out this semantics for future
reference. '

Where AeS: wvw(4) | A

1 t
0 |f
Where o, ...,0, €CUOand € P (v(an),...,v(an)),v(n) | may...an
€ 4
¢ f
Where a, 3 € CUO:  v(a),v(B) ‘ a=0
= t
= f
| - At f V|t f Ot f =|t f
t]f tlt f t|t t t|t f tlt f
flt fFlLr flt f flt t flft

{om(A(0)) |a € CUOY | Va(A(e)) | 3a(A(a))
I t t
{f.1} f t
{f} f f

The matter gets interesting when we move to logics that allow for gluts
or gaps. Let us start with CLulN. Its tabular semantics looks exactly as for
CL, except that the table for negation is replaced. I spell out the matter very
explicitly to avoid confusion.

v (A) | v(=A) | var(-4)
1 0 0
1 1 1
0 (any) 1

The “(any)” indicates that it has no effect on the value of vp;(—A) whether the
value of v(—A) is 0 or 1.

In order to obtain the tuaf semantics for CLulN, we proceed in a special
way. Let me first present the tuaf semantics and next explain.

Where A€ S: v(4) | A
1 t

0 |7

161 use the same notation, vps(A), for the valuation function in all three kinds of semantics
and I shall do so for all logics. The matter is always disambiguated by the context.
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Where o, ...,0, €CUOand € P™: (v(a1),...,v(an)),v(7) | may1...an

€ t
¢ f
Where a, 3€ CUO:  v(a),v(B) ‘ a=0
= ¢
# f
vp(A) [ v(=A) | var(—A)
t 0 f
t 1 U
u 0 f
u 1 u
| (any) t
/\‘tuf \/‘tuf D‘tuf E‘tuf
tlt ¢t f t1t t ¢ tlt t f t1t t f
w|t t f ul|t t t wlt t f wlt t f
fir rr fle t f flt t ¢t flr rt
{vm(A(a)) |a € CUO} ‘ Va(A(a)) ‘ Ja(A(a))
C{tu} ¢ t
={f} f f
(other) f t

The assignment function, which is the same for all semantics considered, has
values in {0,1}. As the value u is introduced by the table for negation, this
value has to occur in all tables in which the input-entries are valuation values.
The “(any)” has the same meaning as in the tabular semantics. The “(other)”
obviously means that the set {vy(A(@)) | @« € CU O} contains at least one f
and at least one ¢ or w.

Where precisely does the tuaf semantics assign the value u? In the tabular
semantics for CLuN, every table defines, for some form A, vy/(A) as a function
of the valuation value of subformulas of A and possibly of the assignment value
of A. So it is easy to check whether at that point the valuation function of
CLuN, or of any other logic L allowing for gluts or gaps, agrees with CL. If
both valuation functions assign a 1 at that point, the tuaf semantics assigns a ¢;
if both valuation functions assign a 0 at that point, the tuaf semantics assigns
a f; if the CL-valuation assigns a 1 and the L-valuation assigns a 0, the tuaf
semantics assigns an a because this is a gap; if the CL-valuation assigns a 0
and the L-valuation assigns a 1, the tuaf semantics assigns an u because this
is a glut. Let us call this the tuaf criterion—this is a criterion for constructing
three-valued and four-valued logics, not the promised criterion for locating flip-
flops. The reader should check that the tuaf semantics for CLulN assigns a u
at two specific points in accordance with the convention just sketched. At those
points, the tabular assignment function assigns a 1 to vp(A). So the tabular
assignment function for CL assigns a 0 to vas(—A), but the tabular assignment
function for CLulN assigns a 1 to vas(—A).

The words “glut” and “gap” have been used with several meanings in the
literature. In [vW96], for example, Georg Henrik von Wright says that there is
an overlap (rather than glut) when a formula is true together with its negation
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and that there is a gap if a formula is false together with its negation. In the
same place, von Wright calls a formula false iff its negation is true.'” So he also
says that there is a glut (or overlap) if a formula is both true and false, and a
gap if it is neither. The tuaf criterion from the previous paragraph is in line
with the way in which I used the words glut and gap in Section 8.1. There is,
however, an important proviso, which was implicit there but became explicit
here: whenever a formula has the value u, this formula constitutes a glut, but
not the other way around. The point is that the values v and a are only assigned
at points where gluts or gaps originate. This will become absolutely obvious
when we look at CLuNs, which we shall do right now. The clausal semantics
is presented in Section 7.2. I shall need the equivalence classes defined there in
the sequel. The tabular semantics is just like that for CL, except that the table
for negation is replaced by the following tables.

Where A € W: v (A) | {v(=B) | B € [A]l} | v (—A4)

1 = {0} 0
1 £ {0} 1
0 (any) 1

A -—A
AN-B —\(A D B)
-AV-B -(AAB)
—|A AN-B _\(A \Y B)

(AVB)AN(mAV-B) | =(A=B)

Ja—A(«@) —VaA(x)
Va-A(w) —Ja—A(a)

1 1

0 0

The lower table is obviously a summary of seven tables, each stating that the
formula in the right column has the same value as the formula in the left column.
Of course, the fascinating bit is the tuaf semantics.

Where A€ S: v(4) | A
1

t
0 |7

Where ay,...,a, € CUO and w € P™:

(W), v(aw)),v(w) | Ton ... on
€ t
¢ ;
Where a,3€ CUO:  v(a),v(B) ‘ a=0
= t
# f

7"Remember that I follow a completely different convention in keeping the metalanguage
classical everywhere.
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Where A € Wi: vam(A) | {v(=B) | B € [Al} | v (—A)
: — {0} 7
t # {0} u
f (any) t
A -—A
AN-B -(A D B)
-AV-B -(AAB)
-~AAN-B -(AV B)
(AVB)A(mAV-B) | -(A=B)
Ja-A(a) —VaA(a)
Va—A(a) —-Ja—-A(a)
t t
U t
f f
/\‘tuf \/‘tuf D‘tuf E‘tuf
t|t t f t1t t t tt t f t1t t f
ult t f u|t t t ul|t t f ul|t t f
e rf fle v f fle t ot fFrr rt

{vim(A(e) |a € CUOY | Va(A(e)) | Fa(A(a))

~+ S~

C t
={f} f
f

There is only one ‘output value’ u in all these tables. The reader is prayed to
check that this agrees with the tuaf criterion. Here are some hints. Primitive
formulas never receive the value u. Formulas of which the central symbol is not
a negation cannot receive a u because, in the tabular semantics, they receive
exactly the formulas that the CL-semantics would assign in view of the values
of the subformulas. Finally, consider the table for the negation of complex
formulas. Among the input-entries of this table is u. Please note that the only
formulas in the left column that may have a valuation value u are those of
the form A. These may start with a negation and hence also have the form
=C. But even if the formula of the form A has the value u, the formula of the
corresponding form ——A needs the value t. Indeed, if, in the CL-semantics, A
has the valuation value 1, then so has =—A, and the CLulNs-semantics agrees
completely with this.

The point is a bit tricky, so allow me to expand. Some readers may feel there
is something wrong here. If one knows, they will argue, that vy (A) = u, then
one knows that the set of formulas verified by M has no CL-model. So in which
sense does the CLulNs-model agree with CL-semantics? This is quite all right
and it is the reason why the tuaf criterion refers to the tabular semantics, which
is two-valued. All one knows in the tabular semantics is that this A, which also
has the form —¢, receives the value 1. That ——A also receives the value 1 agrees
with the CL-semantics.

I mentioned before that the tuaf semantics introduces values v and a where
the gluts or gaps originate. Please check this. If vps(Pa) = vpr(—Pa) = 1 in the
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clausal or tabular CLuNs-semantics, the tuaf semantics settles for vy (—Pa) =
u. Obviously, if vy (Pa) = vp(—Pa) = vp(Qb) = 1 in the clausal or tabular
CLuNs-semantics, then vy (Pa A Qb) = vy (—-Pa V —-Qb) = 1 in the same
semantic system, and hence also vy (PaAQb) = vy (=(PaAQ@b)) = 1. However,
the tuaf semantics settles for vy (=(Pa A @b)) = t. And this is precisely as we
want it: the glut does not originate with —(Pa A Qb); it originates with —Pa.

A comparison with the tuaf semantics for CLuN is enlightening. In CLulN
every inconsistency receives the value u because the truth of no negative formula,
however complex, results from its composing parts. If both A and —A have the
valuation value 1, the glut starts right with —A. This is why I said, some
pages ago, that CLulN maximally isolates inconsistencies. As far as CLuN is
concerned, if vy (p A —p) = 1 then it is possible that vy (—(p A —p)) =1 as well,
but nothing requires this and, if it holds, it forms a novel inconsistency.

A very instructive illustration is the tuaf semantics for the logic with the
terrifying name CLuCoDaM, in words, the logic that allows for conjunction
gluts, for disjunction gluts as well as for disjunction gaps, and for implication
gaps. As Replacement of Identicals is invalid, we will not have the complication
present in CLulNs. Moreover, I skip the tabular semantics. The reader may
very easily construct it in case the tuaf semantics would not be obvious at once.
The tables for A € S, may ..., and o = [ are exactly as for CLulN and
CLuNs and are not repeated.

| - =|t u a f

t|f tit t f f

u | f ul|t t f f

alt alf f t t

flt flr r et
v(AAB)=1: v(AVB)=1: v(ADB)=1:
/\‘t u a f \/‘t u a f D‘t u a f
t1t t u u tlt t t ¢t t1t t f f
ult t u u wlt t t t ult t f f
alu u u u al|lt t u u alt t t t
flu v u wu flt t u u flt t t t
v(AAB)=0: v(AVB)=0: v(ADB)=0:
/\‘t u a f \/‘t u a f D‘t u a f
t|t t f f tla a a a tla a f f
w|t t f f u|la a a a uwla a [ f
alf f f f ala a f f ala a a a
firrrrr fla a [ f fla a a a

{om(A(@) |a € CUO} | Va(A(a)) | Fa(A(a))

C {t,u} t t
C{a, f} f f
(other) f t

This semantics illustrates a variety of cases. As there are no gluts or gaps with
respect to negation, equivalence, and the quantifiers, the output values are all
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t and f. For conjunction there are only gluts. So if v(A A B) = 0, one obtains
the normal table; if v(A A B) =1 every f in the normal table is replaced by a
u. Implication and disjunction illustrate the other cases.

Before, finally, coming to the flip-flop criterion, the reader who is inexperi-
enced with many-valued logics should be warned that a tuaf semantics forms
a rather unusual three-valued or four-valued system. Actually, I do not know
of any published semantics that behaves according to the tuaf criterion. Often
values like u and a, values differing from simple truth or falsehood, are assigned
to primitive formulas in order to indicate that formulas composed from them
behave in an unusual way. Thus in many three-valued semantics for paracon-
sistent logics, A has the value u, or another value different from truth and
falsehood, iff both A and —A are verified by the model. Often the unusual
values are also spread. In the same paraconsistent semantic systems, it often
holds that vy (AA B) = w iff var(A) = vpr(B) = u. So people not familiar with
many-valued logics should not use their insights from the tuaf semantics when
studying many-valued logics from the literature.

Now to the flip-flop criterion. The tuaf criterion warrants that a value u
or a is only assigned to a formula A (i) if A causes a glut, respectively gap, to
obtain and (ii) if this glut or gap does not result from the fact that subformulas
of A are verified or falsified by the models. In other words, all formulas that in
a model M obtain the value u, respectively a, obtain the value f, respectively
t, in another model M that agrees with M on all proper subformulas of A.
Intuitively this means that the glut or gap is avoidable.

This is worth a further comment because it is related to the recursiveness of a
semantics. The assignment function assigns values to all non-logical symbols of
the language (and possibly to some other things as well). The valuation function
assigns values to formulas in a certain order, relying on the assignment. The
order in which valuation values are assigned depends on a certain complexity
function. All formulas are given a certain degree of complexity. A semantics
is recursive iff the valuation value of any formula A is itself a function of the
assignment values of formulas that are at most as complex as A and of the
valuation values of formulas that are less complex than A. Note that there are
many complexity functions'®—TI refer to [VBCO0x] for some theory on complexity
functions and their effect. So not every semantics needs to assign valuation
values in the same order.

Incidentally, there is nothing wrong with a non-recursive semantics, provided
it can be turned into a recursive one. All deterministic semantics presented in
this book are recursive. The indeterministic semantic systems in this book are
officially not recursive, but I have shown an easy way to turn them into semantic
systems that are deterministic and recursive, viz. by letting the assignment
function assign values to all formulas and by referring to the assignment function
where gluts or gaps originate. Indeterministic semantics occurred already in my
[Bat80] and probably in earlier papers by others. For an interesting study and
application of indeterministic semantics, I refer to work by Arnon Avron and
associates, [Avr05, AK05, ABNKO7].

18 A very simple one defines the complexity of A as the number of logical symbols different
from identity that occur in A. This function is not suitable for the CLuNs-semantics because,
for example, the value of vj; (—(AAB)) depends on the value of vpr (—AV—B)). It is instructive
to formulate a suitable function. Here is a hint: ¢(A) =1if A€ S, c(AAB) =c(AV B) =
c(A) + ¢(B) + 1, ¢(—A) = ¢(A) x 2, and so on—beware of equivalence.
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Returning to the tuaf criterion, it warrants that formulas that receive the
value v or a do not receive this value because of the valuation value of less
complex formulas, but because of a direct interference of the assignment. If these
gluts and gaps are located, then all problems (with respect to the upper limit
logic CL) are located. If a classical disjunction of gluts and gaps is derivable
from the premises,'? then so is a classical disjunction of gluts caused by formulas
receiving the value u and of gaps caused by formulas receiving the value s. The
formulas that may possibly receive the value u or a are formulas of a certain
possibly restricted form. In the CLuN-semantics and in the CLuCoDaM-
semantics, the logical forms are unrestricted. In the CLuNs-semantics, the
logical form, viz. 3(A A —A) is restricted to A € W5,

The abnormalities of any corrective adaptive logic are classical conjunctions
of formulas. Let us opt for the formulation used in this chapter: the classical
conjunction of (i) a classical expression, respectively its classical negation, and
(ii) the classical negation of the corresponding standard expression, respectively
the corresponding standard expression. We are now in a position to formulate
the flip-flop criterion in terms of the tuaf semantics. To avoid clutter in the
formulation, let A(@) be a formula in which n > 1 members of V occur free and
let A(B) be the result of systematically replacing in A(@) every member of V
by a member of C U O which do not occur in A(@).?°

Flip-flop criterion: Where AL is defined by LLL, €2, and Reliability or Min-
imal Abnormality, AL is not a flip-flop logic if, for every A € Q and
for every tuaf LLL-model M, one of the following holds: (i) M I+ A iff
vpr(A) = u, (i) A has the form =B and M I+ A iff vy (B) = a, (iii) A has
theformB/\C’andMll—AlfoM( )=, (i )AhastheformB/\ﬂC
and M |- A iff vp(C) = a, (v) A has the form (B/\C’(@)) and M I A iff
v (C(B)) = u for some B (vi) A has the form 3(B A =C(@)) and M I A

iff vpr(C(B)) = a for some 3.
Note that the flip-flop criterion is an implication, not an equivalence. It states
that some adaptive logics are not flip-flops, not that some are.

Applying the flip-flop criterion is easy: one articulates the tuaf semantics for
the lower limit logic LLL, identifies the possibly restricted logical forms that
may receive the value u or a, and checks whether all members of the set of
abnormalities have the required form. Moreover, it is obvious that the flip-flop
criterion is correct. If a classical disjunction of these abnormalities, Dab(A), is
LLL-derivable from a premise set I', then Dab(A) is not LLL-derivable from
a less complex?! Dab-consequence of the premise set. In other words, if an
abnormality A is falsified by every minimal abnormal (or by every reliable)
LLL-model of T', then A is not a disjunct of any minimal Dab-consequence of
I'. So the adaptive logic is not a flip-flop.

That the flip-flop criterion is only an implication is not much of a hindrance.
If it is compatible with the criterion that an adaptive logic is a flip-flop, then

19The “derivable” obviously means derivable by the logic characterized by the tuaf seman-
tics.

20To keep the criterion as simple as possible, I suppose that, if the abnormalities are (pos-
sibly existentially quantified) conjunctions, then these conjunctions are classical (or have the
classical meaning) and the conjuncts occur in a certain order. The supposition agrees with
all abnormalities mentioned in this book.

210Obviously “complex” here refers to the complexity function which underlies the recursive
character of the semantics.
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it is not difficult to figure out by means of the tuaf LLL-semantics whether
the LLL-derivability of a Dab-formula from I' causes every abnormality to be a
disjunct of a minimal Dab-consequence of I'. This basically always proceeds in
the way illustrated by the proof of Theorem 7.3.1.

Let us consider some applications. The tuaf semantics for CLuNs shows
that the adaptive logics CLulNs" and CLulNs™ are not flip-flops. I leave it to
the reader to verify that the flip-flop criterion applies. It follows immediately
that LP" and LP™ are not flip-flops either.

A more interesting case is presented by the C,, logics because a complication
is involved. The congruence requirement may be handled by first defining a
pre-valuation, which looks just like a tuaf semantics itself, and next defining a
valuation from the pre-valuation. Here is the tuaf semantics for C;.

The assignment function is again the general one, as for example in the
CL-semantics from Section 1.7. The pre-valuation vy : Wo — {t,u, f} is char-
acterized by the following tables—the tables for A € S, ma; ... a, and a = 5 are
exactly as for the tuaf valuation of CLulN and of CLuNs and are not repeated.

Where A € Wi vm(A) v(-A) | vy (—A)

t 0 f
t 1 U
f (any) t

Where 1 € {V,A,D} and A 1 B has not the form C A —C:??

u(AtB) v(AV) oy (BY) v(=(AtB)) | vu(=(AtB))

t t t (any) f
t (other) 0 f
t (other) 1 u
f (any) (any) t

Where Q € {V,3}:

ou(QuA(@)) {ou(AB)V) [BECUO} o(-QaA(@) | var(-QaA(a))

t ={t} (any) f
t #{t} 0 f
t # {t} 1 u
f (any) (any) t
The other tables apply to all members of Wp:
vy (mA)  v(——A) ‘ vy (——A) —-A ‘ AWM
t (any) I t t
u 0 f u f
u 1 U f t
f (any) t
A ‘ t u f \% ‘ t u f D ‘ t u f = ‘ t u f
t{t t f tlt t ¢ t1t t f t1t t f
w|t t f ul|t t t wlt t f wlt t f
frrr fle t f flt t ¢ fir 5t
22Remember that A1) abbreviates =(C' A =C).
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{om(A(@) |a € CUO} | VaA(a) | FaA(a)

€ p{t,u} t t
={f} f f
(other) f t

Let f(A) be the obtained by first deleting all vacuous quantifiers in A and then
systematically replacing all variables in the result by the first variables of the
alphabet in alphabetical order. Next, we define the valuation values Vj; in
terms of the pre-valuation values vys by Vas(A) = var(f(A)).

Alternatively, a pre-valuation vy is called a valuation iff vy (A) = var(B)
whenever A =¢ B.

Transforming the above semantics to logic C,, (for any n < w) is an easy
exercise left to the reader—the formulation of the tables for C; and the plot
described in the previous paragraph indicate the road. For Cg, one replaces the
tables for negation by the left and middle table below, and adds the table to
the right below for classical negation:

op(4) v(=A) | v (-4) op(—A)  v(=—A) | vy (—A) A=A
E0 i £ (ay) | f N
t 1 u U 0 f u | f
f (any) t u 1 u flt
f (any) t

The reader is prayed to check that the logics C,,” and C,,”" are not flip-flops.
This is particularly interesting because many abnormalities are C,,-derivable
from other abnormalities, which was a reason to suspect them to be flip-flops.
However, the flip-flop criterion shows that, in the C,, logics, no inconsistency is
derivable from an inconsistency that is less complex according to the complexity
function underlying the semantics.

Incidentally, an indeterministic tuaf semantics is often more transparent than
its deterministic counterpart. As it does not refer to the valuation, we get less
clutter in the heads of the tables. So let me display the relevant tables, viz.
negation tables, for C;.

Where A e W: A| -A
t | [f,ul
f t

Where where 1 € {V,A, D} and A 1 B has not the form C A =C":

AxB AN B ‘ -(A x B)

' ¢ I
t (other) [f,ul
f (any) t

Where Q € {V,3}: QaA(a) {vm(AB)Y)|BeCUO} | -Qai(a)
t {t} f
t (other) [f,u]
f (any) t
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The other tables apply to all members of We:

—A | -4 -4 | AW
t f t t
w | [f,u] u | f
folt flt

The expression [f,u] indicates that the value may be f or u—this is an
indeterministic semantics. Note that the ‘normal’ value, the one that agrees
with CL at this point, is f. So if the value is u, it ‘drops from the sky’ as far
as the indeterministic semantics is concerned—in the deterministic semantics,
the assignment function interferes at this point. The ‘dropping from the sky’
holds for the semantics only; a premise set may require that some values are u
in its models. For other logics, a premise set may require some values to be a.
The metaphor is helpful, however, because it highlights that the values v and a
occur at points where an abnormality is generated.

One may wonder whether it is possible to express the abnormal part of a
model by referring to the set of formulas that have a valuation value u or a.
The answer is yes, but there is a proviso because u or a may be the valuation
value of a pseudo-formula. Let P be a predicate of rank 1 and o0; and oy pseudo-
constants. Consider a CLuN-model. Suppose that Po; has the valuation value
u. Tt follows that the abnormality 3z(Pxz A —Pz), respectively 3z(==Px A—Px)
is verified by the model. Suppose that also Pos has the valuation value wu.
This is another pseudo-formula that obtains the value u, but obviously no new
abnormality results.?3

Before leaving this section, a warning is in place. In its present form, the flip-
flop criterion applies only to corrective adaptive logics and on the condition that
a tuaf semantics can be formulated for the lower limit logic. So, for example,
it cannot be applied to ampliative adaptive logics. However, as CL is the
lower limit of these logics, it is rather easy to determine whether an ampliative
adaptive logic is a flip-flop. So there is no real urge for a criterion.

23There is an interesting relation, but again not an utterly simple one, with the set of
abnormalities introduced in Section 7.5.





