This is the first arithmetic book printed in the Netherlands. It was probably printed by the friars at Schoonhoven for their confrators in Zwolle or Deventer. Six copies are known to exist.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST01</td>
<td>Regula aurea</td>
<td>8 ells of some material costs 11 guilders; what is the price of 97 ells? (solution: 133 3/8)</td>
</tr>
<tr>
<td>AST02</td>
<td>Secunda regula</td>
<td>8 ells cost 11 guilders; how many ells can you buy for 97 guilders?</td>
</tr>
<tr>
<td>Code</td>
<td>Regula de</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>AST03</td>
<td>aromatario</td>
<td>For 6 guilders, equal weights of ginger, pepper, almonds and incense have to be bought; these articles cost 4, 6, 5 and 9 stuivers a pound. How much can be bought of each of these? [1 guilder equals 31 stuivers]</td>
</tr>
<tr>
<td>AST04</td>
<td>societate</td>
<td>Three merchants have to divide their joint profits according to the ratio of the deposits of each of them, these being 24, 32 and 40 respectively.</td>
</tr>
<tr>
<td>AST06</td>
<td>tempore et</td>
<td>Same as above, but accounting for duration.</td>
</tr>
<tr>
<td></td>
<td>societate</td>
<td></td>
</tr>
<tr>
<td>AST07</td>
<td>divite</td>
<td>A legacy of 3000 guilders has to be divided among five sons according to the ratio ½ :1/3 :1/4 :1/5 :1/6</td>
</tr>
<tr>
<td>AST08</td>
<td>lepore</td>
<td>A greyhound running at 19 stadia a day is chasing a hare running at 14 stadia a day. When does the greyhound gets to the hare when his headstart is 45 stadia?</td>
</tr>
<tr>
<td>AST09</td>
<td>solutione</td>
<td>Divide an amount of 28 ½ stuivers according to the ratio 600:400.</td>
</tr>
<tr>
<td></td>
<td>incerta</td>
<td></td>
</tr>
<tr>
<td>AST10</td>
<td>agozinante</td>
<td>A legacy of 1000 guilders has to be divided according to the ratio 1 : 2 : 4 (mother, daughter, son).</td>
</tr>
<tr>
<td>AST11</td>
<td>cambio</td>
<td>Change 7 guilders in equal numbers of ignilia, stuferi, butginae, placcae novae, placca antiqua, duytmari and braminci.</td>
</tr>
<tr>
<td>AST12</td>
<td>situ</td>
<td>A third part of a tower is in the earth, a quarter in water and the rest of the tower, a height of 100 feet is above the water. The question is to figure out the length of the whole tower.</td>
</tr>
<tr>
<td>AST13</td>
<td>numeris</td>
<td>20 canons and 24 chaplains divide 4000 guilders is such a way that for every 3 guilders a canon receives, a chaplain gets 2.</td>
</tr>
<tr>
<td></td>
<td>associatis</td>
<td></td>
</tr>
<tr>
<td>AST14</td>
<td>societa</td>
<td>An amount of 600 guilders has to be divided according to the ratio 1/3:1/4:1/2.</td>
</tr>
<tr>
<td></td>
<td>numerorum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>distincte</td>
<td></td>
</tr>
<tr>
<td>AST15</td>
<td>edificandi</td>
<td></td>
</tr>
<tr>
<td>AST16</td>
<td>quantitate</td>
<td>Same as AST12</td>
</tr>
<tr>
<td></td>
<td>abdita</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- The fifth rule is missing in the text.
- Baumgartner (1913, p120-121) gives the exchange rates of the currencies in problem AST09:
 - 1 aureus = 12 2/3 ignilis
 - 1 ignilis = 2 ½ stuferus
 - 1 stuferus = 2 but
 - 1 but = 4 placca nova
1 placca nova = 2 placca antiqua
1 placca antiqua = 2 duytmarus
1 duytmarus = 2 bramincus

Index in the Singmaster’s classification

<table>
<thead>
<tr>
<th>Sec.</th>
<th>Ref.</th>
<th>Problem</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.G.1</td>
<td>AST07</td>
<td>Inheritance problem</td>
<td>$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}$</td>
</tr>
<tr>
<td></td>
<td>AST14</td>
<td></td>
<td>$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$</td>
</tr>
<tr>
<td>7.G.2</td>
<td>AST10</td>
<td>Posthumous twins</td>
<td>1000; $4:2:1$</td>
</tr>
<tr>
<td>10.A</td>
<td>AST08</td>
<td>Overtaking problem</td>
<td>O-(14,19) D=45</td>
</tr>
</tbody>
</table>

Possible sources

<table>
<thead>
<tr>
<th>Probl.</th>
<th>Rule</th>
<th>Source</th>
<th>Ref.</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST01</td>
<td>Regula aurea</td>
<td>Algorismus Ratisbonensis</td>
<td>AR002</td>
<td>6 ells, 10 guilders, 24 ells</td>
</tr>
<tr>
<td>AST03</td>
<td>Regula aromatario</td>
<td>Algorismus Ratisbonensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST08</td>
<td>Regula de lepore fugiente</td>
<td>Arte Numerandi</td>
<td>B 8v</td>
<td>Same numbers</td>
</tr>
<tr>
<td>AST10</td>
<td></td>
<td>Arte Numerandi</td>
<td>B 8v</td>
<td>Same numbers</td>
</tr>
<tr>
<td>AST12</td>
<td></td>
<td>Algorismus Ratisbonensis</td>
<td>AR069</td>
<td>Same ratio’s</td>
</tr>
<tr>
<td>AST14</td>
<td>Regula de societa numerorum distincte</td>
<td>Arte Numerandi</td>
<td>C1r</td>
<td>Same numbers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Algorismus Ratisbonensis</td>
<td>AR204</td>
<td>365 guilders: $\frac{1}{2}$, 1/3, 1/4</td>
</tr>
<tr>
<td>AST16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anonymous (1480-1484) *De arte numerandi sive arithmeticae summa quadripartita incipit feliceter*
Gerhart Friedrich (c 1450) *Algorismus Ratisbonensis*

From the twelfth to fifteenth centuries, many treatises had titles or incipits that were variations on *De arte numerandi algoristica*, while the abacus treatises might be called *Practica aritmetica cum denariis proiectilibus* or *Algorithmus linealis*.

Cited or used in later works

<table>
<thead>
<tr>
<th>Probl.</th>
<th>Rule</th>
<th>Works</th>
<th>Reference</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST01</td>
<td>Regula aurea</td>
<td>Enclen De Cusa</td>
<td>B 2r</td>
<td>6 ells, 24 guilders</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Johannes Huswirt</td>
<td>C 5v</td>
<td>6 ells, 24 cruciferi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gemma Frisius</td>
<td>Xv</td>
<td>7 ells, 13 guilders</td>
</tr>
<tr>
<td>AST03</td>
<td>Regula de aromatario</td>
<td>Johannes Huswirt</td>
<td>C 6r</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Georgius Peurbach</td>
<td>A 8r</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gemma Frisius</td>
<td>XIXr and v</td>
<td></td>
</tr>
<tr>
<td>AST07</td>
<td>Regule de divite reliquente</td>
<td>Huswirt</td>
<td>C 6r</td>
<td>Same numbers</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>---------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Tornstall</td>
<td>AS17</td>
<td></td>
<td>4350: same ratio's</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AS18</td>
<td></td>
<td>60: same ratio’s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AST08</th>
<th>Regula de lepore fugiente</th>
<th>Huswirt</th>
<th>C 6r</th>
<th>Same numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AST10</th>
<th>Regula de agozinante</th>
<th>Huswirt</th>
<th>C 6v</th>
<th>Same numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enclen De Cusa</td>
<td>B 3r</td>
<td></td>
<td>800 ; same ratio’s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AST16</th>
<th></th>
<th>Huswirt</th>
<th>B 4</th>
<th>Same sumbers</th>
</tr>
</thead>
</table>

Enclen De Cusa Johannes (1502) *Algorismus proiectilium de integris novus* Zwolle.
Huswirt Johannes (1502) *Enchiridion novus algorismi*. Cologne.
Frisius Gemma (1540) *Arithmeticae practicae methodus facilis* G. de Bonte, Antwerpen.
Tonstall Cuthbert (1522) *De Arte Supputandi Libri Quattuuo*

References

Baumgartner, Alajos (1912–1913) Magister Georgius de Hungaria arithmetikája, *Középiskolai Matematikai Lapok*

Gábor, Szabó Péter (2002) „Magyarországi György mester alakja a hazai matematikatörténetben” *Magyar Tudomány*

