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THE MYTH OF SYNCOPATED ALGEBRA 

Ever since Nesselmann’s study on “Greek algebra” (1842), historical accounts on algebra 
draw a distinction in rhetorical, syncopated and symbolic algebra. This tripartite 
distinction has become such a common-place depiction of the history of algebraic 
symbolism that modern-day authors even fail to mention their source (e.g., Boyer 1968, 
201; Flegg and Hay 1985;  Struik 1987). The repeated use of Nesselmann’s distinction in 
three Entwickelungstufen on the stairs to perfection is odd because it should be 
considered a highly normative view which cannot be sustained within our current 
assessment of the history of algebra. Its use in present-day text books can only be 
explained by an embarrassing absence of any alternative models. There are several 
problems with Nesselmann’s approach.  

A PROBLEM OF CHRONOLOGY 

Firstly, if seen as steps within a historical development, as is most certainly the view by 
many who have used the distinction, it suffers from some serious chronological 
problems. Nesselmann (1942, 302) places Iamblichus, Arabic algebra, Italian abbacus 
algebra and Regiomontanus under rhetorical algebra (“Die erste und niedrigste Stufe”) 
and thus covers the period from 250 tot 1470. A solution to the quadratic problem of al-
Kwārizmī is provided as an illustration. The second phase, called syncopated algebra, 
spans from Diophantus’s Arithmetica to European algebra until the middle of the 
seventeenth century, and as such includes Viète, Descartes and van Schooten. 
Nesselmann discusses problem III.7 of the Arithmetica as an example of syncopated 
algebra. The third phase is purely symbolic and constitutes modern algebra with the 
symbolism we still use today. Nesselmann repeats the example of al-Kwārizmī in 
modern symbolic notation to illustrate the third phase, thereby making the point that it 
is not the procedure or contextual elements but the use of symbols that distinguishes the 
three phases. 

Though little is known for certain about Diophantus, most scholars situate the 
Arithmetica in the third century which is about the same period as Iamblichus (c. 245-
325). So, syncopated algebra overlaps with rhetorical algebra for most of its history. 

                                                             

1 Post-doctoral research fellow of the Research Foundation-Flanders (FWO-Vlaanderen). 



2 

 

This raises serious objections and questions such as “Did these two systems influence 
each other?”. Obviously, historians as Tropfke (1933, II, 14) and Gandz (1936, 271) were 
struck my this chronological anomaly but formulated an explanation. They claim that 
Arabic algebra does not rely on Diophantus’s syncopated algebra but descends instead 
from Egyptian and Babylonian problem-solving methods which were purely rhetorical. 
However, these arguments are now superseded by the discovery of the Arabic 
translations of the Arithmetica (Sesiano 1982). Diophantus was known and discussed in 
the Arab world ever since Qustā ibn Lūqā (c. 860). So if the syncopated algebra of 
Diophantus was known by the Arabs why did it not affect their rhetorical algebra? 

THE ROLE OF SCRIBES 

The earliest extant Greek manuscript, once in the hands of Planudes and used by 
Tannery, is Codex Matritensis 4678 (ff. 58-135) of the thirteenth century. The extant 
Arabic translation studied by Sesiano was completed in 1198. So no copies of the 
Arithmetica before the twelfth century are extant. The ten centuries separating the 
original text from the earliest extant Greek copy is a huge distance. Two important 
revolutionary changes took place around the ninth century: the transition of papyrus to 
paper and the replacement of the Greek uncial or majuscule script by a new minuscule 
one. Especially the transition to the new script was a drastic one. From about 850 every 
scribe copying a manuscript would almost certainly adopt the minuscule script (Wilson 
1983, 1996: 66-7). Transcribing an old text into the new text was a laborious and 
difficult task. Certainly not an undertaking to be repeated when a copy in the new script 
was already somewhere available. It is therefore very likely that all extant manuscript 
copies are derived from one Byzantine archetype copy in Greek minuscule. Although 
contractions where also used in uncial texts, the new minuscule much facilitated the use 
of ligatures. This practice of combining letters, when performed with some consequence, 
saved considerable time and therefore money. Imagine the time savings by consistently 
replacing άριθμος, which appears many times for every problem, with ς in the whole of 
the Arithmetica. The role of professional scribes should therefore not be 
underestimated. Although we find some occurrences of shorthand notations in papyri, 
the paleographic evidence we now have on a consistent use of ligatures and 
abbreviations for mathematical words points to a process initiated by mediaeval scribes 
much more than to an invention by classic Greek authors. Whatever syncopated nature 
we can attribute to the Arithmetica it is mostly an unintended achievement of the 
scribes.2 The complete lack of any syncopation in the Arabic translation further supports 
this thesis. The name for the unknown and the powers of the unknown and even 
numbers are written by words in Arabic translation. The lack of well-established Hindu-
Arabic numerals seems to indicate that the Arabic translation was faithful to a Greek 
majuscule archetype. Sesiano (1882: 75) argues that the Arabic version relies on the 
commentary by Hypathia while the Greek versions relate to the original text with some 
early additions and interpolations.  

In so far the Arithmetica deserves the special status of syncopated algebra, it is very 
unlikely that the practice of using ligatures in Greek texts is a practice that developed 
from the ninth century and not of Diophantus during the third century. This overthrows 
much of the chronology as proposed by Nesselmann. 

                                                             

2 This view is also expressed in relation to Archimedes’s works (Netz and Noel, 2007). 
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SYMBOLS OR LIGATURES? 

A third problem concerns the interpretation of the qualifications ‘rhetorical’ and 
‘syncopated’. Many authors of the twentieth century attribute a highly symbolic nature 
to the Arithmetica (e.g. Kline 1972, I: 139-40). Let us take Cajori (1928, I, 1993: 71-4) as 
the most quoted reference on the history of mathematical notations. Typical for Cajori’s 
approach is the methodological mistake of starting from modern mathematical concepts 
and operations and looking for corresponding historical ones. He finds in Diophantus no 
symbol for multiplication and addition is expressed by juxtaposition. For subtraction the 
symbol is an inverted ψ. As an example he writes the polynomial  

x3+13x2+5x+2   as  K     


  

where KY, ΔΥ, ς are the third, second and first power of the unknown and 


 represents 
the units. Higher order powers of the unknown are used by Diophantus as additive 
combination of the first to third powers.  

Cajori makes no distinction between symbols, notations or abbreviations. In fact, his 
contribution to the history of mathematics is titled A History of Mathematical Notations. 
In order to investigate the specific nature of mathematical symbolism one has to make 
the distinction somewhere between symbolic and non-symbolic mathematics. This was, 
after all, the purpose of Nesselmann’s distinction. We take the position together with 
Heath (1885), Ver Eecke (1926) and Jacob Klein, that the letter abbreviations in the 
Arithmetica should be understood purely as ligatures (Klein 1936; 1968: 146): 

We must not forget that all the signs which Diophantus uses are merely word 
abbreviations. This is true, in particular for the sign of “lacking”, ↑, and for 

the sign of the unknown number, ς, which (as Heath has convincingly shown) 
represents nothing but a ligature for αρ (άριθμος). 

Even Nesselmann acknowledges that the ‘symbols’ in the Arithmetica are just word 
abbreviations (“sie bedient sich für gewisse oft wiederkehrende Begriffe und 
Operationen constanter Abbreviaturen statt der vollen Worte”). In his excellent French 
translation of Diophantus, Ver Eecke consequently omits all abbreviations and provides 
a fully rhetorical rendering of the text as in “Partager un carré proposé en deux carrés” 
(II.8), which makes it probably the most faithful interpretation of the original text.3  

This objection marks our most important critique on the threefold distinction: symbols 
are not just abbreviations or practical short-hand notations. Algebraic symbolism is a 
sort of representation which allows abstractions and new kinds of operations. This 
symbolic way of thinking can use words, ligatures or symbols, as we will argue further. 

                                                             

3 This problem led Fermat to add the marginal note in his copy of Bachet’s translation “Cubum 
autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam 
in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere”. If Fermat had 
used the ‘syncopated’ algebra of Diophantus he might have had some marginal space left to add 
his “marvelous proof” for this theorem. 
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The distinction between words, word abbreviations and symbols is in some way 
irrelevant with regards to the symbolic nature of algebra. 

COUNTER EXAMPLES 

A final problem for Nesselmann’s tripartite distinction is that now, almost two centuries 
later, we have a much better understanding of the history symbolic algebra. Nesselmann 
relied mostly on the Jesuit historian Cossali (1797-9) for a historical account of Italian 
algebra before the sixteenth century. Except for Rafello Canacci, Cossali does not discuss 
much the algebra as it was practiced within the abbacus tradition of the fourteenth and 
fifteenth century. Guillaume Libri, who had collected many manuscripts from this 
tradition, describes and published several transcriptions in his Histoire des sciences 
mathématiques en Italie published in 1838. Strangely, the well-informed Nesselmann 
does not seem to know the book and thus remains ignorant of the continuous practice of 
algebra in Italy since Fibonacci and the first Latin translations of al-Kwārizmī. It is only 
since the past decades that we have a more complete picture on abbacus algebra thanks 
to the work of Gino Arrighi, Warren van Egmond, and the Centro studi della matematica 
medioevale of Sienna. In our understanding, symbolic algebra is an invention of the 
sixteenth century which was prepared by algebraic practice of the abbacus tradition. At 
least abbacus algebra has to be called syncopated in the interpretation of Nesselmann. 
Many of abbacus manuscripts use abbreviations and ligatures for cosa, the unknown (as 
c, co. or ρ), censo or cienso, the second power of the unknown (ce. or ç), cubo, the third 
power (cu.) and beyond. Also plus, minus and the square root are often abbreviated as in 
p, m and R. From the fifteenth century we also find manuscripts that explicitly refer to a 
method of solving problems that is different from the regular rhetorical method. In an 
anonymous manuscript of c. 1437,4 the author solves several standard problems in two 
ways. One he calls symbolical (figuratuiamente) and the other rhetorical (per scrittura). 
He explains:  

I showed this symbolically as you can understand from the above, not to 
make things harder but rather for you to understand it better. I intend to 
give it to you by means of writing as you will see soon.5 

This is the first occasion in the history of algebra where an author makes an explicit 
reference to two different kinds of problem solving, which we would now call symbolical 
and non-symbolical. This manuscript or related copies may have influenced the German 
cossists. Regiomontanus, who maintained close contacts with practitioners of algebra in 
Italy, adopts the same symbolic way of solving problems. In his correspondence with 
Johannes Bianchini of 1463 we find problems very similar to the abbacus text: divide 10 

                                                             

4 Florence, Biblioteca Nazionale, Magl. Cl. XI. 119. A critical edition and translation of this 
manuscript is in preparation: A. Heeffer, “The algebra problems of Ragioni apartenente 
all’arismetricha with an English translation”. 

5 f. 59r: “Ora io telo mostrata figuratuiamente come puoi comprendere di sopra bene che e lla ti 
sia malagievole ma per che tulla intenda meglio. Io intende di dartela a intendere per scrittura 
come apresso vedrai”. 
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into two parts so that one divided by the other together with the other divided by the 
first equals 25.6 In modern symbolic notation the problem can be formulated as follows: 

 

10
25

10

x x

x x


 


 

 

Regiomontanus solves the problem in the same manner of abacus algebra but adopts 
only the symbolical version (as shown in Figure 1). He uses symbols for cosa and censo 
which we typically find in German cossist algebra from 1460 for a period of about 160 
years. 

 

FIGURE 1: THE SOLUTION OF AN ARABIC DIVISION PROBLEM 
BY REGIOMONTANUS (C 1460, NÜRNBERG CENT. V 56C, F. 23) 
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

 

 

 

Literal transcription in 
modern symbolism. 

While we see in later abbacus algebra and Regiomontanus the roots of symbolic algebra, 
Nesselmann places both within the stage of rhetorical algebra. According to 
Nesselmann’s own definition these two instances of algebraic practice should at least be 
called syncopated. 

CONCLUSION 

We have argued that the interpretation of rhetorical, syncopated and symbolic algebra 
as three historical phases in the development of algebra cannot be sustained. The special 

                                                             

6 The correspondence is kept in Nürnberg, City Library, Cent. V, 56c, ff. 11r-83v, The transcription 
is by Curtze 1902, 232-234: “Divisi 10 in duos, quorum maiorem per minorem divis, item 
minorem per maiorem. Numeros quotiens coniunxi, et fuit summa 25 : quero, que sint partes”. 
The corresponding problem in Magl. Cl. XI. 119 is on f. 61v but uses a sum of 50 instead of 25. 
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status given to syncopated algebra seems to be an invention to provide the Arithmetica 
of Diophantus with a privileged status. Diophantus has always been difficult to place 
within the history of algebra. The humanist project of reviving ancient Greek science and 
mathematics played a crucial role in the creation of an identity for the European 
intellectual tradition. Beginning with Regiomontanus’s 1464 lecture at Padua, humanist 
writers distanced themselves from “barbaric” influences and created the myth that all 
mathematics, including algebra descended from the ancient Greeks. Later writers such 
as Ramus, Peletier, Viète and Clavius participated in a systematic program to set up 
sixteenth-century mathematics on Greek foundations. The late discovered Arithmetica of 
Diophantus was taken as opportunity by Viète to restore algebra to a fictitious pure 
form.7 The special status of syncopated algebra should be understood within this 
context. A symbolic interpretation of Diophantus’s Arithmetica as a work of algebra by 
Bombelli, Stevin and Viète was made possible only through the developments before its 
rediscovery. Diophantus became important for algebra because symbolic algebra was 
already established by 1560.  

Ironically, Renaissance humanist may be wrong about the Greek origin of the 
Arithmetica after all. Diophantus lived in Alexandria and there is no evidence that he was 
Greek. Hankel posed the provocative thesis that he was Arab.8 If the Arithmetica was not 
written in Greek no one would have attributed it to the Greek tradition. Others 
conjectured he was a Hellenized Babylonian (Burton 1995). Precisely because the 
Arithmetica does not connect well with the Greek tradition of arithmetic and logistic 
provides impetus to a non-Greek origin. 

As the tripartite distinction has obscured the true history of the development of 
symbolic algebra, we propose an alternative one.  

AN ALTERNATIVE DISTINCTION 

The term ‘symbolic algebra’ was introduced by the Cambridge wrangler George Peacock. 
in A Treatise on Algebra (1830). Peacock makes the distinction between arithmetical and 
symbolical algebra devoting a volume to each. Both kinds of algebra use symbols but in 
arithmetical algebra “we consider symbols as representing numbers, and the operations 
to which they are submitted as included in the same definitions” (1845, iv). In 
arithmetical algebra he allows only operations that are closed within this algebra thus 
avoiding negative and imaginary numbers. A quadratic equation is therefore no part of 
arithmetical algebra. Symbolical algebra is then considered to be a generalization of 
arithmetical algebra lifting the restrictions posed on operators. Though his book 
initiated work on the logical foundations of algebra, the restrictions set on arithmetical 
algebra are completely arbitrary and do not contribute to a historical assessment of 
symbolic algebra. 

                                                             

7 For a discussion on the creation of this new identity see Høyrup (1996) and Heeffer (2007). 

8 Hankel (1874: 157): “Wäre eine Conjectur erlaubt, ich würde sagen, er war kein Grieche; 
vielleicht stammte er von den Barbaren, welche später Europa bevölkerten; wären seine 
Schriften nicht in griechischer Sprache geschrieben, Niemand würde auf den Gedanken kommen, 
dass sie aus griechischer Cultur entsprossen wären”. 
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In 1881 Léon Rodet questioned the threefold distinction by Nessselmann and proposed 
instead to draw the line between symbolic algebra and one dealing with abbreviations 
and numerical data (Rodet 1881, 69-70). Klein (1936; 1968, 146) took this as a 
departure for his seminal work on the emergence of symbolic algebra. Still, the focus on 
the use of symbols as a prerequisite leads to a limited view of symbolic algebra. As we 
will argue, a symbolic approach to algebra is perfectly possible without symbols. 
Moreover, symbols are usually introduced in a later stage towards symbolic algebra. 
Essentially there is only a distinction between symbolic and non-symbolic algebra, but 
to account for historical periods with symbolic practice without the use of symbols we 
propose a threefold distinction as follows: 

1. Non-symbolic algebra: this is an algorithmic type of algebra dealing with 
numerical values only or with a non-symbolic model. Typical examples are Greek 
geometrical algebra or the Chinese method for solving linear problems with 

multiple unknowns (Fāng chéng 方程) 

2. Proto-symbolic algebra: algebra which uses words or abbreviations for the 
unknown but is not symbolic in character. This would include Diophantus, 
Arabic algebra, early Abbacus algebra and early German cossic algebra. 

3. Symbolic algebra: algebra using a symbolic model, which allows for 
manipulations on the level of symbols only. Established around 1560 and 
prepared by later abbacus and cossic algebra, Michael Stifel, Girolamo Cardano 
and the French algebraic tradition. 

We now proceed to clarify the specificity of the symbolic mode of algebraic practice. 

THE CONSTRUCTIVE FUNCTION OF SYMBOLISM 

What is so specific about symbolic reasoning? What makes symbolism so powerful that 
it has completely conquered mathematical and scientific discourse since the 
seventeenth century? Many philosophers, from Descartes and Leibniz to Charles 
Sanders Peirce and Ernst Cassirer, have written extensively about the role of symbolism 
in mathematical problem solving. We will only touch upon some points of this long 
tradition. Our focus will be on the role of symbolism in the formation of new concepts in 
mathematics.  

SYMBOLS VS. NOTATIONS 

Part of the explanation of the emergence of symbolic algebra lies in the differentiation of 
the functions of symbols and notations. Both have a representative function but the role 
attributed to symbols surpasses its direct representational function. Notations have 
grown out of shorthand writing or abbreviations of words. As such, they directly 
represent the operations and concepts behind the abbreviation. Symbols add an extra to 
the function of notations, a distinction which has mostly been neglected in the history of 
mathematics.9 Let us look at the function of some very essential symbols when they 
were first introduced. 

                                                             

9 Montucla in his Histoire des mathématiques (1799, I, 587), sees no difference at all between 
words used for operations and symbols: “Notre algèbre ne diffère en aucune manière de ce qu’on 
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THE FIRST OCCURRENCE OF THE PLUS SIGN 

Tropfke (1933, II, 14-8) describes how the addition operation was introduced. The + 
sign was first used in a printed arithmetic book by Johannes Widmann (1489, f. I vir).10 

One could ask why the notation first appeared 
in Germany and not within the Italian abbacus 
tradition. We believe there is a valid 
explanation for this. The abbacus tradition 
after Fibonacci was fully vernacular. Later 
abbacus treatises use 

 

 p  and m   

 

for the Italian words plus and meno. The 
German cossic tradition was originally Latin-
based. Widmann found the sign in the 
manuscript collections he consulted for his 
arithmetic, particularly in the Dresden C80, 
(Wappler 1887, 13).  

 

 

FIGURE 2: THE FIRST USE OF THE + AND 
– SIGN IN PRINT FROM WIDMANN 1989. 

 

This manuscript uses the + notation as a ligature in a section written c. 1486. The plus 
sign is the shorthand for the Latin word et. The form of the crossed lines is evidently 
derived from the letter t in et. The use of + as ligature was not only used as a 
mathematical operation but also in the meaning of the word ‘and’ (e.g. Wappler 1887, 
15). It first occurs within an algebraic context, as shown in Figure 3: 

 

 

3 2
2x x  

FIGURE 3: THE FIRST APPEARANCE OF THE + SIGN IN THE 
DRESDEN CODEX C80, F. 350V, WRITTEN AROUND 1486 
(FROM TROPFKE 1933, II, 17). 

                                                                                                                                                                               

vient de voir. Il y a seulement ceci de plus, que les modernes affectant de mettre tout en signes, en 
ont imaginé pour désigner l’addition, la soustraction des grandeurs et leurs égalité. Les premiers 
algébristes du siezème siècle les indiquèrent par les lettres initiales de plus, moins, égal. Nous le 
faisons aujourd’hui par les signes +, -, =”. 

10 This page of Widmann’s book has lead to wild speculations on the origin of the signs (see Cajori 
1928, I, 232-4). The meaning here is only one of aggregation but  not relevant for our further 
discussion. 



9 

 

 

Because a ligature is essentially a shorthand notation, we would expect signs, which are 
based on ligatures, to be mathematical notations rather than symbols. This leads us to a 
key question: is the plus sign here a notation or a symbol?  The answer will depend on 
the context. If printed in an early fifteenth century arithmetic book, the + sign in ‘3 + 5 
makes 8’, would be interpreted as a shorthand for ‘and’, meaning the addition of five to 
three. Here, ‘plus’ describes an operation, a mental or even physical action. There is 
some temporal element present in the description ‘3 + 5 makes 8’. First you have three; 
after adding five, you find out that you have eight. The + sign in this context is thus a 
direct representation of the action of adding things together. Therefore, we would not 
consider it as a symbol in the case of an arithmetic book. Interestingly, Widmann 
(1489), who uses the signs in an arithmetic book, does not so in the introductory 
chapters on the basic operations of addition and subtraction. Instead, he first employs 
the signs after 166 pages on mercantile problems. Which brings us to the context in 
which signs and symbols occur. 

CONTEXTUAL ELEMENTS IN THE USE OF SIGNS 

The context in which the + sign first appeared, illustrated in Figure 3, is very different 
from that of Widmann’s arithmetic. Two important elements of this first occurrence are 
also present in the first use of operations on equations by Cardano (1539).11  

Firstly, the + sign is introduced within the context of algebra, and not in arithmetic. It is 
part of a binomial expression with two cossic terms, x3 and 2x2. One interpretation is to 
just see it as the addition of these two terms, similar to the arithmetical example above. 
However, the context of this important manuscript where operations on polynomials 
are introduced, asks for a more adequate interpretation.12 The plus sign here has the 
additional function of creating a structure on which can be operated. For the abbacus 
masters and the early cossists binomials are more like primitive structures. In the late 
fourteenth century, algebra treatises typically have a section dealing with the addition, 
subtraction and multiplication of binomials. These binomials can be algebraic, as in the 
example from the illustration, but often also irrational. For example, Maestro Gilio, in 
the Siena L.IX.28 (Franci 1983, 7)  has his algebra preceded by a “trattato dele radice” 
demonstrating how to add, subtract and multiply irrational binomials: 

 

Se avessi a multipricare 7 e R di 8 per 7 meno R di 8 fa così: multiprica 7 via 
7 fa 49, et della multipricagione della R di 8 in meno R di 8 si ne perviene 
meno 8, tralo di 49 resta 41, e della multipricagione di 7 in più R di 8 e di 7 
meno R di 8 si nne perviene ragiunti insieme nulla, adomque multipricando 
7 per R di 8 in 7 meno R di 8 si nne viene 41. 

                                                             

11 As argued in Heeffer (2007a), Cardano (1539) was the first to show an explicit operation on an 
equation  and the first to subtract two equations (Cardano 1545). Both instances are shown as 
marginal notations in the first printed editions. 

12 Grammateus (1518/21) also first uses the signs in his chapter on algebra, see Figure 5 and the 
discussion below.  
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The rule corresponds with the general formula: 

 

   2a b a b a b     

In abbacus treatises a binomial is considered a primitive element, a mathematical entity 
such as a number or a proportion. The plus sign is a constructive operator in the 
formation of a algebraic binomial. While the plus sign is derived from a ligature, its use 
for the representation of a binomial within an algebraic context points at a symbolic 
function.  

A second contextual element of in the introduction of algebraic symbolism, is the 
function of clarification and illustration. Elsewhere we have shown how the first 
addition of two equations by Cardano appeared as an illustration in the Ars Magna.13 
Also in the Dresden C80, the expression x3 + 2x2 functions as an illustration between the 
text lines. The use of + in this illustration emphasizes the aggregate function of the sign. 
The binomial is ‘constructed’ by placing the sign in between the two terms. The 
temporal aspect of adding numbers together is absent here. The structure  of the 
binomial is depending on the + as a connector. These contextual elements bring us to an 
interpretation of the + sign as a symbol rather than as a short hand notation.  

PARADOXES OF SYMBOLISM? 

During the seventeenth century we find discussions concerning conceptual difficulties 
with some basic features of symbolic reasoning which we now take for granted. 
Mersenne (1625, 522-1) talks about  “a strange paradox” when discussing the rules of 
signs: 

Or plusierss s’étonnent comment il est possible que – multiplié par – , c’est-à-
dire moins par moins fasse +, et que P multiplié par M, ou M par P fasse M, ce 
qui semble estre contre toute sorte de raison. Sur quoi vous pouvez voir 
Clavius au 6 chap. de son Algebre; neantmoins i’en ay veu qui nient cette 
proposition, sur laquelle ie ne m’arresterai pas davantage. 

While the discussion of such “paradoxes” may seem idle to Mersenne, they increasingly 
appear during the seventeenth century. Antoine Arnauld, who wrote an important 
philosophical work know as The Logic of Port-Royal (Arnauld, 1662), also published a 
Geometry (Arnauld, 1667). In the book he includes an example of symbolic rules that he 
considers to be against our basic intuitions on magnitudes and proportions. His 
reasoning goes as follows. Suppose we have two numbers, a larger and a smaller one. 
The proportion of the larger to the smaller one should evidently be larger than the 
proportion of the smaller to the larger one. But if we use 1 as the larger number and – 1 
as the smaller one this would lead to  

                                                             

13 See Heeffer 2007a).  The illustration, an essential contribution to symbolic algebra, is omitted 
in the English edition by Witmer (1968). 
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1 1

1 1





 

which is against the rules of algebra. Witnessing the multiple instances in which this 
discussion turns up during the seventeenth century, the clash between symbolic 
reasoning and classic proportion theory, taught within the quadrivium, was experienced 
as problematic. Also Leibniz found it important enough to write an article about 
(Leibniz, 1712, 167). He acknowledges the problem as a genuine one, but states that the 
division should be performed as a symbolic calculation, the same way as we do with 
imaginary numbers. Indeed, when blindly applying the rules of signs there is no problem 
at all. When dividing a positive number by a negative one, the result is negative, and 
dividing a negative number by a positive one, the result is also negative. Therefore   

1 1

1 1





 

The discussion was not closed by Leibniz. Several eighteenth-century authors return to 
the question. E.g. Rolle (1690, 14-22), Newton (1707, 3), Maclaurin (1748, 6-7) and 
d’Alembert (1751-81). 

SYMBOLIC REASONING WITHOUT SYMBOLS 

Interestingly, the application of these rules posed no problems in the abbacus tradition 
before 1500. In the Summa, Pacioli lists the rules of signs for the arithmetical operations 
for addition, subtraction, multiplication and division. Dividing a positive by a negative 
produces a negative. Dividing a negative by a positive leads to a negative (“A partire piu 
per meno neven meno. A partire meno per piu neven meno”) (Pacioli 1494, f. 113r), see 

Figure 4.  

 

 

 

FIGURE 4: PACIOLI’S RULES OF SIGNS FOR DIVISION  

These rules were known implicitly and have been applied within the abbacus tradition, 
for example in the multiplication of irrational binomials in Fibonacci (1202; 
Boncompagni 1857, 370; Sigler 2003, 510): 

  4 2 5 8 22 4 8 5 2      
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However, an explicit treatment was impeded by the immature status of negative 
quantities. As far as we know, Pacioli was the first to list these formal rules for the basic 
operations of arithmetic.14 Importantly, Pacioli introduced these rules in distinction 8, as 
a preparation to his treatment of algebra. In contrast with the discussion of the basic 
operations of arithmetic, the rules of signs have a more formal and general character. 
Except for an illustrating example with numbers, the formulation of the rules does not 
refer to any sort of quantities, integers, irrational binomials or cossic numbers. The rules 
only refer to ‘the negative’ and ‘the positive’. Despite the absence of any symbolism, we 

consider this an early instance of symbolic reasoning. Except for the ligatures p and m , 

no symbols are used for plus and minus. Still, its use in the “formalism” of these rules 
makes piu and meno qualify as symbols.  

TOWARDS OPERATIONAL SYMBOLISM 

After Pacioli, the rules of signs appear more frequently in algebra textbooks. Exemplary 
is the anonymous Vienna codex 5277, written between 1500 and 1518 (Kaunzner, 
1972). Here the rules of signs are introduced in relation to operations on polynomials 
and use the + and – sign introduced some decades before in the Dresden C80. For 
multiplication we find (f. 6r; Kaunzner 1972, 132): 

  Si multiplicas 

per

per

per et econtra

 

 
 


 







fit 






 

Here, the rule appears to be symbolical, because we recognize our current symbols, but 
it is conceptually identical with that of Pacioli. Where we have previously denoted a 
constructive function to the plus sign in the Dresden C80, we can here discern an 
additional operative function. Not only can + and – be used to construct binomials, the 
signs now come into relation with the  terms of the polynomials in which they appear. 
The example added in the Vienna 5277 show how to multiply two binomials:15 

  6 8 5 7x x    

The rule describes the following: 

Cumque in unitate + φ repetitur et in altera – φ, ducta x per + φ, exoritur + x. 
Si augetur x per – φ (ut praecedens edocuit regula), edocitur – x. Sed ex – per 
+ vel + per – semper – perficiecitur, sicut sequens docebit exemplum.  

The minus sign which was introduced for the construction of binomials is here used for 
the first time to denote a negative term! The text describes the multiplication of the 

                                                             

14 We checked about thirty transcriptions of abacus manuscripts published by Gino Arrighi and 
the Center for the Study of Medieaval Mathematics of Siena. Also Tropfke (1933, II, 124-8; 1980) 
lists no sources prior to Pacioli (1494). 

15 Codex Vindobonensis 5277, f. 6v; Kaunzner 1972, 132. We replaced the cossic sign of the 
unknown by x. The sign φ is used for units and has to be interpreted as x0. The habit of using φ or 
Ø in German algebra textbooks is abandoned by the end of the sixteenth century. 
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positive term x with the negative  – x0. Where previous uses of negative values were 
highly problematic, we now witness how the use of symbolism facilitates the acceptance 
of negative terms. The modern interpretation of subtraction as the addition of a negative 
term now becomes realized. This is exemplified where the author introduces the first 
rule of algebra (on linear equations) with the following cautela (f. 13v; Kaunzner 1972, 
139):  

Si radix in latera continet + φ, tunc is numerus. Quo radix subabundat, ex 
numero, cui radix aequatur, subtrahur. Si vero – φ x continuerit, tunc 
addatur. 

Where the original al-jabr operation from early Arabic algebra cannot be interpreted as 
the addition of a term to both sides of an equation to eliminate a negative term, such 
interpretation now becomes justified.16 This rules describes that to solve the linear 
equation, for example, 

ax b d cx    

you proceed by adding cx to both parts and subtracting b from both parts. By means of a 
symbolism for representing negative terms, a basic operation on equations now 
becomes commonplace. 

The story does not end here. The Vienna codex is innovating in yet another aspect. The 
problem of a man making three business trips is one of the examples illustrating the first 
rule.17 At each trip he doubles his income but spends 4 florenos. He ends up with 
nothing. The problem asks for the capital he started with. The author solves the problem 
by constructing an equation as follows. Take x for the original capital. After the first trip 
he has 2x – 4. After the second he arrives at 4x – 8 – 4, and after the third he end up with 
8x – 16 – 8 – 4. Using the new symbol for negative terms, the manuscript reads:18 

8 x  – 16 φ  – 8 φ – 4 φ hoc totum est aequale 0 x0 

Though lacking a symbolic expression for the equation, the author puts the constructed 
polynomial equal to zero. This is highly uncommon for the beginning of the sixteenth 
century. This Vienna codex is an example of a sudden leap in the evolution towards 

                                                             

16 See Heeffer 2007d, and Oaks and Alkhateeb (2007) for such an interpretation of al-jabr. 

17 Better known as the monkey and coconut problem. See Heeffer “How Algebra Spoiled 
Renaissance Recreational Problems” for a more extensive discussion.  

18 Vienna 5277, f. 14r; Kaunzner 1972, 139: “Est quidam mercator, qui emit aliquot talenta 
piperis, et iterum vendit, et lucratur tantum, quantum summa valebat capitalis, et exponit 4 
florenos. Cum residuo consimiliter tantum consequitur lucri, quantum restabat, et 4fl expendit. 
Itidem tertio modo facit, et 4fl exponit, et demum nihil, vel lucri, vel summae capitalis, remansit. 
Quaeritur iam de summa pecunia originali. Sit 1 x, et lucratur 1 x, ergo erunt 2 x. Ex his aufer 4 φ 
vel fl, restat 2x – 4 φ . Deinceps, cum eo lucratur totidem, quantum restabat, fiunt per consequens 
4 x – 8 φ . Ex quibus demendi sunt 4 fl, Stabit residuum 4 x – 8 φ – 4 φ. Tertio iterum tantum 
hicratur, quantum restabat, fiunt itaque 4 x – 16 φ – 8 φ. Ex his ultimo auferantur 4fl, et 
relinquuntur 8 x  – 16 φ  – 8 φ – 4 φ hoc totum est aequale 0 φ. Secundum cautelam addendi sunt 
16 φ  8 φ 4 φ ad 0 φ. Summa, scilicet 28 φ, dividatur per 8 x, Quia aequivalent. Et quotiens, scilicet 
3 ½, dicit florenorum in primo habitorum numerum”. 
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algebraic symbolism. While it only adopts the + and – sign from a previous manuscript, 
the new symbols advance several conceptual steps: a symbolic expression for the rules 
of signs, the elimination of negative terms in an equation and the equation of a 
polynomial to zero.  

THE SPREAD OF OPERATIVE SYMBOLISM 

We have evidence that the Vienna codex was consulted by both Heinrich Schreyber 
(Grammateus) and Christoff Rudolff. Grammateus (1518/21, f. Gvir) uses the + and – 
signs and mentions the rules of signs while introducing operations on polynomials as 
shown in Figure 5. 

 

 

FIGURE 5: THE RULES OF SIGNS FOR MULTIPLICATION BY GRAMMATEUS 

The cautela for the first rule from the Vienna codex is reproduced literally in a German 
translation by Grammateus.19 That Rudolff in his Coss collected most of his material from 
Vienna manuscripts was known and discussed already in the sixteenth century.20 With 
Pacioli (1494), Grammateus (1518/21) and Rudolff (1525) the symbolic approach to 
operate on positive and negative terms was spread all over Europe. This heralded the 
use of operative symbolism in algebra. 

HOW NEW CONCEPTS ARE CREATED BY OPERATIVE SYMBOLISM 

Let us return to the apparent paradox of Arnauld. Leibniz argued that symbolic 
reasoning resolves the paradox. We have shown that such kind of reasoning was 
common practice in the abbacus tradition of the late fifteenth century. Pacioli would 
respond to the discussion that 

                                                             

19 Grammateus, 1518/21, f. Jiiiir: “Wann do stet in ainer position der zwayer die sich mit ainander 
vorgleichen das zaich + so subtrahir sein zal von sienem gleichen in der andern position wird 
aber funden – so addire die selbig zal zu der in der andern position”. 

20 See the introduction by Stifel in the 1553 edition. Also discussed in my “The Rhetoric of 
Problems in Algebra Textbooks from Pacioli to Euler”. 
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1

1
 equals 

1

1
  and 

1

1


 also equals 

1

1
 , therefore 

1 1

1 1





. 

 

Although we do not find the symbols for division, negative numbers and equations in 
Pacioli (1494) or his predecessors, the common application of these operations provides 
evidence of a symbolic mode of reasoning. We will now discuss how symbolism has had 
a decisive role in the formation of three important  new mathematical concepts of the 
sixteenth century. The first one relates to the discussion on negative quantities. 

NEGATIVE NUMBERS 

The Vienna 5277 manuscript was the first to apply the  – sign to an algebraic term. We 
have pointed out the symbolic function of the sign. While the minus sign has been 
abstracted from the subtraction operation, it now incorporates the extra function of 
negation. By placing a – sign before an algebraic term, the term becomes negated. Two 
centuries later, d’Alembert will define ‘negative’ in the Encyclopédie as “the affection of 
term by the sign –” (Diderot and d’Alembert 1780, XXII, 289). d’Alembert rebukes “those 
who pretend that the ratio between 1 and – 1 is different from the ratio – 1 and 1”. They 
are wrong in two respects, he claims. Firstly, because in algebra the division by negative 
numbers is common practice, and secondly because the value of the product of 1 and 1 is 
the same as the value of the product of – 1 and – 1.  

His characterization ‘affecting’ is interesting. He makes the distinction between negation 
used for an isolated quantity (or term) and its use in the sense of a – b. A negative value 
must be understood in the first meaning, not in the second. He opposes the view of a 
negative quantity as a quantity less than zero, “as most mathematicians do”.  

We believe this is indeed the meaning attributed to a negative quantity by the early 
cossists. The first appearance of the negative symbol has the intention of affecting an 
algebraic term. The Vienna 5277 manuscript uses the minus sign to create negative 
quantities. Studies as by Sesiano (1985) and Gericke (1996) discussing several instances 
of so-called negative values from Fibonacci to the sixteenth century can be criticized for 
their all too casual interpretation of negatives. The concept of a negative quantity as a 
value smaller than zero was an unacceptable, and even ridiculous idea before the 
seventeenth century. However, the symbolic affection of an algebraic term did lead to 
the concept of a negative number. Negative numbers have become possible with the 
introduction of the minus sign. Where the – sign originally had the function of a 
constructive operator for binomials, in the early sixteenth century it became an 
operative symbol for the negation of algebraic terms. Once negative quantities had 
become established by this symbolic construction, the elimination of negative terms 
from an equation by addition became a common operation.  

DEFINING IMAGINARY NUMBERS BY OPERATIONAL SYMBOLISM 

Bombelli was the first to define imaginary numbers by the eight combinatorial 
operations that are possible with the products of the negative and positive roots of plus 
and minus one. Note the correspondence with Pacioli’s rules of sign when Bombelli lists 
the following operations in Figure 6 (Bombelli 1572, f. 169r). These operations defined 
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imaginary numbers within the symbolic model. The interpretation of their arithmetical 
equivalence still remained a mystery. It took two more centuries to arrive at a 
geometrical interpretation of complex numbers. This story is well covered by Barry 
Mazur (2003). For a mathematician, Mazur pays surprisingly much attention to the 
conceptual evolutions which have lead to imaginary numbers. He makes an interesting 
observation with regard to possible forms of notation. In discussing dal Ferro’s formula 
for one case of the cubic equation he remarks (Mazur 2003, 124-5):  

In discussing the “easy” case in which the indicator 
2 3

4 27

c b
d    is positive, I 

said that the manner in which Dal Ferro’s expression is written tells us how 
to compute it (extract, as indicated, the roots and make the arithmetic 
operations requested by the formula). The expression doesn’t provide a 
specific method for the extraction of those roots, but once we have such a 
method, the expression is itself interpretable as a possible algorithm for the 
production of a real number. It is often the case that our expressions for 
specific numbers suggest algorithms, or partial algorithms, for their com-
putation. To take a random example, the number 221 – 1  happens to equal 7 
x (300,000 - 407), and this number written in decimal notation is 2097151. 
Each way of writing this number hints at a specific strategy for its calculation 
(e.g., if you express the number as 221 – 1, the form of this expression bids 
you do what it tells you to do to calculate the number: raise 2 to the twenty-
first power and then subtract 1 from the result). 

Mazur here describes in different terms the same mechanism we have proposed to 
explain the function of symbolism. The “symbolic expression is itself interpretable as a 
possible algorithm for the production” of instances of the concept it represents. By using 
different symbolic expressions for a same number, we represent different algorithms or 
strategies for its computation. In other words, the possible combinatory operations on 
the object become embedded with the representation. The symbolism performs the task 
of representing these possible operations. We will now look at what this concretely 
means for the equation sign of a symbolic equation.  

 

 

( 1).( )

( 1).( )

( ).( ) 1

( ).( ) 1

( 1).( )

( 1).( )

( 1).( )
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   

   

   

   

   

   

   

 

 

FIGURE 6: A DEFINITION OF IMAGINARY NUMBERS BY THEIR POSSIBLE OPERATIONS 
(BOMBELLI 1572) 
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THE EQUALITY SYMBOL AS THE CROWN JEWEL OF SYMBOLIC ALGEBRA 

The equality sign evidently refers to the arithmetical equivalence of two expressions left 
and right from the sign. For example, the expression 3 + 5 = 8 denotes the arithmetical 
equivalence of the sum of three and five with eight, as well as of eight with its 
partitioning into the numbers three and five. However, if we look at the historical 
moment at which the equality sign was introduced, we arrive at a very different picture. 
The equality sign as we now use it, was introduced in a book on algebra by Robert 
Recorde (see Figure 7). He chose the sign of two parallel lines ‘because no two things can 
be more equal’. This often quoted citation ignores the more important motivation for 
introducing the sign. Firstly, the equation sign was not introduced, either in his lengthy 
introduction, discussing the basic operations of arithmetic and extraction of roots, or in 
the dialogue on operations on polynomials or the rule of proportion. Instead, he 
introduced the sign in the chapter on the resolution of algebraic equations “For easie 
alteration of equations … And to avoid the tediouse repetition of these woordes: is 
equalle to: I will sette as I doe often in woorke use, a paire of parralle …  lines of one 
lengthe, thus : ==, bicause noe 2, thynges, can be moare equalle”, (Recorde 1557, fol. 
FFiv). 

 

FIGURE 7: THE FIRST USE OF THE EQUATION SIGN IN PRINT (FROM RECORDE 1557) 

The use of the sign is thus specifically motivated by the alteration, or manipulation of 
equations. From this quote we can read the specific representational function that 
makes the equality sign the prime symbol of the concept of an equation. In addition to its 
direct reference to arithmetical equivalence, the equality symbol represents the 
combinatorial operations which are possible on an equation. These operations include 
adding or subtracting homogeneous terms to both sides of the equation, dividing or 
multiplying an equation by a constant or unknown (introduced by Cardano) and adding 
or subtracting two equations (introduced by Cardano and perfected by Peletier and 
Buteo). The equality sign symbolizes the algebraic equation. We have argued elsewhere 
that the concept of an equation fully emerged around 1560 (Heeffer 2007a). We also 
stated that symbols are introduced as a result of symbolic thinking. The introduction of 
the equality symbol provides historical evidence for the introduction of a symbol 
representing a newly emerged mathematical concept.  
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The introduction of the equation symbol completes the basic stage of development 
towards symbolic algebra, as initiated in Germany by the end of the fifteenth century. 
The time of the introduction, 1557, coincides perfectly with our conceptual analyses of 
algebra textbooks of the sixteenth century.  

As the minus sign facilitated the acceptance of negative numbers, so did the equation 
sign contribute to the further development of algebra towards the study of the structure 
of equations. That the equation sign, as introduced by Recorde, was not universally 
accepted for another century, is irrelevant for our argumentation. Other signs or even 
words functioned as the equation symbol in the same way as the two parallel lines had 
done. Thomas Harriot, in his manuscripts, placed two short strokes between the parallel 
lines resembling ‘II’ and introduced the < and > signs as they are used today (Stedall 
2003, 8). This was later abandoned in the printed edition and through its further use by 
Oughtred’s Clavis mathematicae, the equation sign became generally accepted in 
England.  
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