Spoiled for Choice?

Diderik Batens
Centre for Logic and Philosophy of Science
Ghent University, Belgium

diderik.batens@ugent.be
http://logica.UGent.be/dirk/
http://logica.UGent.be/centrum/
http://logica.UGent.be/adlog/
Outline

Unexpected Inconsistency

The Problem

Gluts and Gaps

All Together

Ambiguity-adaptive Logics

Adaptive Zero Logic
Handling Unexpected Inconsistency

inconsistency-adaptive logics (the oldest adaptive logics) devised for specific application type:

T, intended as consistent, turns out to be inconsistent
Handling Unexpected Inconsistency

inconsistency-adaptive logics (the oldest adaptive logics) devised for specific application type:

[T], intended as consistent, turns out to be inconsistent

⇒ reason from ‘the theory’ in search of consistent replacement
Handling Unexpected Inconsistency

inconsistency-adaptive logics (the oldest adaptive logics) devised for specific application type:

T, intended as consistent, turns out to be inconsistent

⇒ reason from ‘the theory’ in search of consistent replacement

‘the theory’ = ‘T in its full richness, except for the pernicious consequences of its inconsistency’
Handling Unexpected Inconsistency

inconsistency-adaptive logics (the oldest adaptive logics) devised for specific application type:

\[T, \text{ intended as consistent, turns out to be inconsistent} \]

⇒ reason from ‘the theory’ in search of consistent replacement

‘the theory’ = ‘\(T \) in its full richness, except for the pernicious consequences of its inconsistency’

interpret \(T \) ‘as consistently as possible’
consider inconsistencies as false, except where \(T \) prevents this

adapt to the specific inconsistencies of \(T \)
Handling Unexpected Inconsistency

inconsistency-adaptive logics (the oldest adaptive logics) devised for specific application type:

T, intended as consistent, turns out to be inconsistent

⇒ reason from ‘the theory’ in search of consistent replacement

‘the theory’ = ‘T in its full richness, except for the pernicious consequences of its inconsistency’

interpret T ‘as consistently as possible’
consider inconsistencies as false, except where T prevents this

adapt to the specific inconsistencies of T

CL too strong, paraconsistent logics too weak
Solution: inconsistency-adaptive logics

special case of adaptive logic

standard format

· lower limit logic

· set of abnormalities Ω

· strategy
Solution: inconsistency-adaptive logics

special case of adaptive logic

standard format

- lower limit logic
 reflexive, transitive, monotonic, uniform, and compact logic, for which there is a positive test
- set of abnormalities Ω
 characterized by a (possibly restricted) logical form
- strategy
 Reliability, Minimal Abnormality, . . .
Solution: inconsistency-adaptive logics

special case of adaptive logic

standard format

- *lower limit logic*
 reflexive, transitive, monotonic, uniform, and compact logic, for which there is a positive test
- *set of abnormalities* Ω
 characterized by a (possibly restricted) logical form
- *strategy*
 Reliability, Minimal Abnormality, . . .

upper limit logic:

$\text{ULL} = \text{LLL} +$ axiom/rule that trivializes abnormalities
semantically: the LLL-models that verify no abnormality
Solution: inconsistency-adaptive logics

special case of adaptive logic

standard format

- **lower limit logic** \(\text{CLuN} \)
 reflexive, transitive, monotonic, uniform, and compact logic, for which there is a positive test
- **set of abnormalities** \(\Omega \)
 \(\exists (A \land \neg A) \)
 characterized by a (possibly restricted) logical form
- **strategy**
 Reliability, Minimal Abnormality, . . .

upper limit logic: \(\text{CL} \)
\(\text{ULL} = \text{LLL} + \) axiom/rule that trivializes abnormalities
semantically: the \(\text{LLL} \)-models that verify no abnormality
Some Notes

“abnormality” is technical term
only abnormalities of corrective adaptive logics CL-impossible
Some Notes

“abnormality” is technical term
only abnormalities of corrective adaptive logics \textbf{CL}-impossible

standard format provides adaptive logic with
\begin{itemize}
 \item dynamic proofs
 \item selection semantics (selects \textbf{LLL}-models of Γ)
 \item most of the metatheory
 (soundness, completeness, all central properties)
\end{itemize}
Some Notes

“abnormality” is technical term
only abnormalities of corrective adaptive logics **CL**-impossible

standard format provides adaptive logic with
* dynamic proofs
* selection semantics (selects **LLL**-models of Γ)
* most of the metatheory
 (soundness, completeness, all central properties)

adaptive logics are formal characterizations of methods (not
deductive logics)
Some Notes

“abnormality” is technical term
only abnormalities of corrective adaptive logics **CL**-impossible

standard format provides adaptive logic with
* dynamic proofs
* selection semantics (selects **LLL**-models of \(\Gamma \))
* most of the metatheory
 (soundness, completeness, all central properties)

adaptive logics are formal characterizations of methods (not
deductive logics)

classical logical symbols added (\(~\), \(\exists\), ... , \(\exists\), \(\exists\))
(not in premises or conclusion)
Some Notes

“abnormality” is technical term
only abnormalities of corrective adaptive logics CL-impossible

standard format provides adaptive logic with
* dynamic proofs
* selection semantics (selects LLL-models of Γ)
* most of the metatheory
 (soundness, completeness, all central properties)

adaptive logics are formal characterizations of methods (not
deductive logics)

classical logical symbols added (\neg, \land, \ldots, \exists, \models)
(not in premises or conclusion)
drastically simplify metatheoretic proofs
simplify proof theory
The Problem

approach in terms of inconsistency-adaptive logics the only correct one?
The Problem

approach in terms of inconsistency-adaptive logics the only correct one?

claim in 1997:

classical logicians obsessed by contradictions
The Problem

approach in terms of inconsistency-adaptive logics the only correct one?

claim in 1997:
classical logicians obsessed by contradictions
paraconsistent logicians obsessed by contradictions
The Problem

approach in terms of inconsistency-adaptive logics the only correct one?

claim in 1997:
classical logicians obsessed by contradictions
paraconsistent logicians obsessed by contradictions

deep, many more **LLL**-variants possible

- negation gaps
- other gluts and gaps
- ambiguity
- combinations (up to zero logic)
The Problem

approach in terms of inconsistency-adaptive logics the only correct one?

claim in 1997:
classical logicians obsessed by contradictions
paraconsistent logicians obsessed by contradictions
indeed, many more LLL-variants possible
 · negation gaps
 · other gluts and gaps
 · ambiguity
 · combinations (up to zero logic)

all offer minimally abnormal interpretation of some Γ
The Problem

approach in terms of inconsistency-adaptive logics the only correct one?

claim in 1997:

classical logicians obsessed by contradictions
paraconsistent logicians obsessed by contradictions

indeed, many more LLL-variants possible

- negation gaps
- other gluts and gaps
- ambiguity
- combinations (up to zero logic)

all offer minimally abnormal interpretation of some Γ

in CL all of those abnormalities surface as inconsistencies
The Problem

approach in terms of inconsistency-adaptive logics the only correct one?

claim in 1997:
classical logicians obsessed by contradictions
paraconsistent logicians obsessed by contradictions

indeed, many more LLL-variants possible
 · negation gaps
 · other gluts and gaps
 · ambiguity
 · combinations (up to zero logic)

all offer minimally abnormal interpretation of some Γ

in CL all of those abnormalities surface as inconsistencies
example: conjunction gap $\{p, q, \neg(p \land q)\}$
Gluts and Gaps

semantically:

glut: $\nu(A) = 1$ and ν-values of subformulas sufficient for $\nu(A) = 0$ in CL-semantics
Gluts and Gaps

semantically:

glut: $v(A) = 1$ and v-values of subformulas sufficient for $v(A) = 0$ in CL-semantics

gap: $v(A) = 0$ and v-values of subformulas sufficient for $v(A) = 1$ in CL-semantics
Gluts and Gaps

semantically:

glut: $v(A) = 1$ and v-values of subformulas sufficient for $v(A) = 0$ in CL-semantics

gap: $v(A) = 0$ and v-values of subformulas sufficient for $v(A) = 1$ in CL-semantics

negation gap: $v_M(A) = 0$ and $v_M(\neg A) = 1$ and $v_M(\neg A) = 0$

negation glut: $v_M(A) = 1$ and $v_M(\neg A) = 0$ and $v_M(\neg A) = 1$
Gluts and Gaps

semantically:

glut: \(\nu(A) = 1 \) and
\(\nu \)-values of subformulas sufficient for \(\nu(A) = 0 \) in CL-semantics

gap: \(\nu(A) = 0 \) and
\(\nu \)-values of subformulas sufficient for \(\nu(A) = 1 \) in CL-semantics

negation gap: \([\nu_M(A) = 0] \nu_M(\Diamond A) = 1 \) and \(\nu_M(\lnot A) = 0 \)
negation glut: \([\nu_M(A) = 1] \nu_M(\Diamond A) = 0 \) and \(\nu_M(\lnot A) = 1 \)

predicative and in terms of the checked symbols:

negation gap: \(\Diamond (\Diamond A \land \lnot \lnot A) \)
negation glut: \(\Diamond (\Diamond A \land \lnot A) \) (new formulation!)
More Gluts and Gaps
More Gluts and Gaps

conjunction:

\[\exists ((A \land B) \land \neg (A \land B)) \]

\[\exists (\neg (A \land B) \land (A \land B)) \]
More Gluts and Gaps

conjunction:
\[\exists ((A \land B) \land \neg (A \land B)) \]

identity:
\[\exists (\alpha \equiv \beta \land \neg \alpha = \beta) \]
More Gluts and Gaps

conjunction:
\[\exists((A \land B) \land \neg (A \land B)) \]
\[\exists(\neg (A \land B) \land (A \land B)) \]

identity:
\[\exists(\alpha \equiv \beta \land \neg \alpha = \beta) \]
\[\exists(\neg \alpha \equiv \beta \land \alpha = \beta) \]

existential quantifier:
\[\exists(\exists \alpha A(\alpha) \land \neg \exists \alpha A(\alpha)) \]
\[\exists(\neg \exists \alpha A(\alpha) \land \exists \alpha A(\alpha)) \]
More Gluts and Gaps

conjunction:
\[\exists((A \land B) \land \neg (A \land B)) \]
\[\exists(\neg (A \land B) \land (A \land B)) \]

identity:
\[\exists(\alpha = \beta \land \neg \alpha = \beta) \]
\[\exists(\neg \alpha = \beta \land \alpha = \beta) \]

existential quantifier:
\[\exists(\exists \alpha A(\alpha) \land \neg \exists \alpha A(\alpha)) \]
\[\exists(\neg \exists \alpha A(\alpha) \land \exists \alpha A(\alpha)) \]

example:
\[\{ p, r, (p \lor q) \supset s, (p \lor t) \supset \neg r, (p \land r) \supset \neg s, (p \land s) \supset t \} \]
has models
if negation gluts allowed
More Gluts and Gaps

conjunction:
\[\exists ((A \land B) \land \neg (A \land B)) \quad \exists (\neg (A \land B) \land (A \land B)) \]

identity:
\[\exists (\alpha \rightleftharpoons \beta \land \neg \alpha = \beta) \quad \exists (\neg \alpha \rightleftharpoons \beta \land \alpha = \beta) \]

existential quantifier:
\[\exists (\exists \alpha A(\alpha) \land \neg \exists \alpha A(\alpha)) \quad \exists (\neg \exists \alpha A(\alpha) \land \exists \alpha A(\alpha)) \]

example:
\{ p, r, (p \lor q) \supset s, (p \lor t) \supset \neg r, (p \land r) \supset \neg s, (p \land s) \supset t \}
has models
if negation gluts allowed
if negation gaps allowed
More Gluts and Gaps

conjunction:
\[\exists((A \land B) \land \neg(A \land B)) \]
\[\exists(\neg(A \land B) \land (A \land B)) \]

identity:
\[\exists(\alpha \equiv \beta \land \neg\alpha = \beta) \]
\[\exists(\neg\alpha \equiv \beta \land \alpha = \beta) \]

existential quantifier:
\[\exists(\exists\alpha A(\alpha) \land \neg\exists\alpha A(\alpha)) \]
\[\exists(\neg\exists\alpha A(\alpha) \land \exists\alpha A(\alpha)) \]

example:
\[\{p, r, (p \lor q) \supset s, (p \lor t) \supset \neg r, (p \land r) \supset \neg s, (p \land s) \supset t\} \]
has models
if negation gluts allowed
if negation gaps allowed
if conjunction gaps and disjunction gaps allowed
More Gluts and Gaps

conjunction:
\[\exists((A \land B) \land \neg(A \land B)) \]
\[\exists((\neg(A \land B) \land (A \land B)) \]

identity:
\[\exists(\alpha \equiv \beta \land \neg \alpha = \beta) \]
\[\exists(\neg \alpha \equiv \beta \land \alpha = \beta) \]

existential quantifier:
\[\exists(\exists \alpha A(\alpha) \land \neg \exists \alpha A(\alpha)) \]
\[\exists(\neg \exists \exists \alpha A(\alpha) \land \exists \exists \alpha A(\alpha)) \]

example:
\[\{ p, r, (p \lor q) \supset s, (p \lor t) \supset \neg r, (p \land r) \supset \neg s, (p \land s) \supset t \} \]
has models
if negation gluts allowed
if negation gaps allowed
if conjunction gaps and disjunction gaps allowed
if implication gluts allowed

. . .
Axiomatization of the Logics

CL axioms for the classical symbols
Axiomatization of the Logics

CL axioms for the classical symbols

axiom for each standard symbol: example *disjunction*

no gluts or gaps: \((A \lor B) \equiv (A \uparrow B)\)
Axiomatization of the Logics

CL axioms for the classical symbols

axiom for each standard symbol: example *disjunction*

no gluts or gaps: \((A \lor B) \equiv (A \山路 B)\)

gluts no gaps: \((A \山路 B) \山路 (A \lor B)\)

Axiomatization of the Logics

CL axioms for the classical symbols

axiom for each standard symbol: example *disjunction*

no gluts or gaps: \((A \lor B) \equiv (A \triangleright B)\)

gluts no gaps: \((A \triangleright B) \supset (A \lor B)\)

gaps no gluts: \((A \lor B) \supset (A \triangleright B)\)
Axiomatization of the Logics

CL axioms for the classical symbols

axiom for each standard symbol: example *disjunction*

- no gluts or gaps: \((A \lor B) \equiv (A \uparrow B)\)
- gluts no gaps: \((A \uparrow B) \supset (A \lor B)\)
- gaps no gluts: \((A \lor B) \supset (A \uparrow B)\)
- both: nothing
Axiomatization of the Logics

CL axioms for the classical symbols

axiom for each standard symbol: example *disjunction*

no gluts or gaps: \((A \lor B) \equiv (A \triangledown B)\)

gluts no gaps: \((A \triangledown B) \supset (A \lor B)\)

gaps no gluts: \((A \lor B) \supset (A \triangledown B)\)

both: nothing

naming: **CLuD**, **CLaD**, **CLoD**, ...
Combinations and Adaptive Logics

combinations of gluts and gaps: \textbf{CLaNoC, CLaCuX}, \ldots,
Combinations and Adaptive Logics

combinations of gluts and gaps: \text{CLaNoC, CLaCuX}, \ldots,

Adaptive

any of those Tarski logics may will function as \text{LLL}
suitable Ω determines which abnormalities minimized by AL
(normal case: minimize all permitted gluts and gaps
warrants \text{ULL} = \text{CL})

and combine with strategy: \text{CLaCuX}^m, \ldots
All Together

CLo
All Together

CLo

meaning of every logical symbol arbitrary (seems nonsense)
All Together

CLo

meaning of every logical symbol arbitrary \textit{(seems nonsense)}

adaptive: CLo^r, CLo^m, \ldots

meaning of every logical symbol contingent on the premises \textit{(seems very interesting)}
All Together

\textbf{CLo}

meaning of every logical symbol arbitrary \textit{ (seems nonsense) }

adaptive: CLo\(^r\), CLo\(^m\), \ldots

meaning of every logical symbol contingent on the premises \textit{ (seems very interesting) }

moreover:

a CLo\(^m\)-proof from \(\Gamma\) reveals which (combinations of) gluts/gaps lead to a sensible minimally abnormal interpretation of \(\Gamma\)

each of these may be the basis for a transformation to a consistent theory
All Together

CLo

meaning of every logical symbol arbitrary (seems nonsense)

adaptive: **CLo**\(^r\), **CLo**\(^m\), . . .

meaning of every logical symbol contingent on the premises (seems very interesting)

moreover:

a **CLo**\(^m\)-proof from \(\Gamma\) reveals which (combinations of) gluts/gaps lead to a sensible minimally abnormal interpretation of \(\Gamma\)

each of these may be the basis for a transformation to a consistent theory

better is coming up
Ambiguity-adaptive Logics

rough idea CLI: occurrences of non-logical term may have a different index, which may reveal a difference in meaning
Ambiguity-adaptive Logics

rough idea **CLI**: occurrences of non-logical term may have a different index, which may reveal a difference in meaning

example: \(p^1 \land q^2 \not\vdash_{\text{CLI}} p^3 \)
(some sophistication required at predicative level)
Ambiguity-adaptive Logics

rough idea CLI: occurrences of non-logical term may have a different index, which may reveal a difference in meaning

example: $p^1 \land q^2 \not\vdash_{\text{CLI}} p^3$
(some sophistication required at predicative level)

abnormalities: $\nvdash p^i \equiv p^j$ (for $i, j \in \mathbb{N}$), . . .
(some sophistication required at predicative level)

CLI^\times: ambiguities are minimized
Ambiguity-adaptive Logics

rough idea **CLI**: occurrences of non-logical term may have a different index, which may reveal a difference in meaning

example: $p^1 \land q^2 \not\models^*_\text{CLI} p^3$

(some sophistication required at predicative level)

abnormalities: $p^i \equiv^* p^j$ (for $i, j \in \mathbb{N}$), . . .

(some sophistication required at predicative level)

CLI$^\times$: ambiguities are minimized

\[
\Gamma \vdash^{\text{CLA}_m} A \text{ iff } \Gamma^\dagger \vdash^{\text{CLI}_m} A^\dagger
\]
Adaptive Zero Logic

\(\text{CL}\emptyset I \): all gluts/gaps + non-logical terms indexed
Adaptive Zero Logic

CL₀I: all gluts/gaps + non-logical terms indexed

\[\Gamma \vdash_{\text{CL₀I}} A \iff \Gamma^\dagger \vdash_{\text{CL₀I}} A^\dagger \]
Adaptive Zero Logic

\(\text{CL}^{\emptyset} \text{I}: \text{all gluts/gaps + non-logical terms indexed} \)

\[\Gamma \vdash_{\text{CL}^{\emptyset}} A \iff \Gamma^{\dagger} \vdash_{\text{CL}^{\emptyset}} A^{\dagger} \]

meaning of every logical symbol is contingent
any 2 occurrences of non-logical symbol may have different meaning
Adaptive Zero Logic

CL₀I: all gluts/gaps + non-logical terms indexed

\[\Gamma \vdash_{CL_0} A \text{ iff } \Gamma^\dagger \vdash_{CL_0 I} A^\dagger \]

meaning of every logical symbol is contingent
any 2 occurrences of non-logical symbol may have different meaning

(post-modernist logic)
Adaptive Zero Logic

CL₀I: all gluts/gaps + non-logical terms indexed

\[\Gamma \vdash_{CL₀} A \iff \Gamma^{\dagger} \vdash_{CL₀} A^{\dagger} \]

meaning of every logical symbol is contingent

any 2 occurrences of non-logical symbol may have different meaning

(post-modernist logic)

for all \(\Gamma \) and \(A \), \(\Gamma \not\vdash_{CL₀} A \)
Adaptive Zero Logic

CL∅I: all gluts/gaps + non-logical terms indexed

\[\Gamma \vdash_{\text{CL∅}} A \text{ iff } \Gamma^\dagger \vdash_{\text{CL∅I}} A^\dagger \]

meaning of every logical symbol is contingent
any 2 occurrences of non-logical symbol may have different meaning
(post-modernist logic)

for all \(\Gamma \) and \(A \)

\[\Gamma \vdash_{\text{CL∅}^m} A \text{ iff } \Gamma^\dagger \vdash_{\text{CL∅I}^m} A^\dagger \]
Adaptive Zero Logic

\(\text{CL}_{I}: \) all gluts/gaps + non-logical terms indexed

\[\Gamma \vdash_{\text{CL}_I} A \iff \Gamma^{\dagger} \vdash_{\text{CL}_I} A^{\dagger} \]

meaning of every logical symbol is contingent
any 2 occurrences of non-logical symbol may have different meaning
(post-modernist logic)

for all \(\Gamma \) and \(A \), \(\Gamma \not\vdash_{\text{CL}_0} A \)

\[\Gamma \vdash_{\text{CL}_0} A \iff \Gamma^{\dagger} \vdash_{\text{CL}_0} A^{\dagger} \]

meaning of logical symbols depends on premise set
ambiguities minimized (in function of premises)
Some Comments

heuristic value:
\[\text{CL}^0_m \]-proofs reveal which (combination of)
gluts/gaps/ambiguities lead to a sensible minimally abnormal
interpretation of \(\Gamma \)
Some Comments

heuristic value:
\(\text{CL} \emptyset^m \)-proofs reveal which (combination of) gluts/gaps/ambiguities lead to a sensible minimally abnormal interpretation of \(\Gamma \)

\(\text{CL} \emptyset^m \) itself (permitting all reviewed abnormalities) is always an option, but a clumsy one if premise set has no \(\text{CL} \)-models (often only long disjunctions derivable: spoiled for choice)
Some Comments

heuristic value:

\(\text{CL}^{\text{m}} \)-proofs reveal which (combination of) gluts/gaps/ambiguities lead to a sensible minimally abnormal interpretation of \(\Gamma \)

\(\text{CL}^{\text{m}} \) itself (permitting all reviewed abnormalities) is always an option, but a clumsy one if premise set has no \(\text{CL} \)-models (often only long disjunctions derivable: spoiled for choice)

if \(\Gamma \) has \(\text{CL} \)-models, its \(\text{CL}^{\text{m}} \)-consequences are identical to its \(\text{CL} \)-consequences
Some Comments

heuristic value: \(\text{CL}^m \) -proofs reveal which (combination of) gluts/gaps/ambiguities lead to a sensible minimally abnormal interpretation of \(\Gamma \)

\(\text{CL}^m \) itself (permitting all reviewed abnormalities) is always an option, but a clumsy one if premise set has no \(\text{CL} \)-models (often only long disjunctions derivable: spoiled for choice)

if \(\Gamma \) has \(\text{CL} \)-models, its \(\text{CL}^m \)-consequences are identical to its \(\text{CL} \)-consequences

negation gluts and ambiguities suit every premise set but not always optimal (communication / minimal abnormal interpretation / . . .)
Some Comments

heuristic value:
\(\text{CL}\emptyset^m\)-proofs reveal which (combination of) gluts/gaps/ambiguities lead to a sensible minimally abnormal interpretation of \(\Gamma\)

\(\text{CL}\emptyset^m\) itself (permitting all reviewed abnormalities) is always an option, but a clumsy one if premise set has no \(\text{CL}\)-models (often only long disjunctions derivable: spoiled for choice)

if \(\Gamma\) has \(\text{CL}\)-models, its \(\text{CL}\emptyset^m\)-consequences are identical to its \(\text{CL}\)-consequences

negation gluts and ambiguities suit every premise set but not always optimal (communication / minimal abnormal interpretation / . . .)

heuristic value makes extra-logical preferences applicable and suggests new ones
Questions?