

5th Conference: Non-Classical Logic. Theory and Applications Torun, 27–29 September 2012

A Pedagogically Useful Relevant Implication and Some General Lessons

Diderik Batens

Centre for Logic and Philosophy of Science Ghent University, Belgium

diderik.batens@ugent.be
http://logica.UGent.be/dirk/
http://logica.UGent.be/centrum/

Aim

itch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Outline

Aim

- Fitch-Style Rules: PC
- **Relevant Consequence Relation**
- **Eliminating Nested Arrows**
- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux
- **Algebraic Semantics**
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Outline

Aim

- Fitch-Style Rules: PC
- **Relevant Consequence Relation**
- **Eliminating Nested Arrows**
- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux
- **Algebraic Semantics**
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

relevant implication in elementary logic course

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

relevant implication in elementary logic course

- relevant logics too complex
- relevant logics too far away from CL

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

relevant implication in elementary logic course

- relevant logics too complex
- relevant logics too far away from CL

How to combine a (simple) relevant implication with CL?

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

relevant implication in elementary logic course

- relevant logics too complex
- relevant logics too far away from CL

How to combine a (simple) relevant implication with CL?

· combination with more sophisticated implication is not more difficult

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● のへで

relevant implication in elementary logic course

- relevant logics too complex
- relevant logics too far away from CL

How to combine a (simple) relevant implication with CL?

- · combination with more sophisticated implication is not more difficult
- · PCR (1992, 1978?)
- · Ghent lecture by David Makinson

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

paradoxes of classical logic break down into:

 (i) consequence relation: derivable given vs. derivable from *p* ⊢_{PC} *q* ⊃ *q cf.* semantics

- (ii) contradictory theories no models logically indistinguishable no sensible reasoning from them
- (iii) meaning of the implication in **CL** vs. natural languages $p \vdash_{PC} q \supset p$, $p \vdash_{PC} \neg p \supset q$, $\neg (p \supset q) \vdash_{PC} p \land \neg q$

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

paradoxes of classical logic break down into:

 (i) consequence relation: derivable given vs. derivable from *p* ⊢_{PC} *q* ⊃ *q cf.* semantics

- (ii) contradictory theories no models logically indistinguishable no sensible reasoning from them
- (iii) meaning of the implication in **CL** vs. natural languages $p \vdash_{PC} q \supset p$, $p \vdash_{PC} \neg p \supset q$, $\neg(p \supset q) \vdash_{PC} p \land \neg q$

official relevance tradition (A & B) removes all paradoxes in single move

however: derivable given, ... sensible

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

PCR: **PC** + specific simple relevant implication pedagogically useful

theoretical problems similar to PC + other relevant implications

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

PCR: PC + specific simple relevant implication pedagogically useful theoretical problems similar to **PC** + other relevant implications

propositional level: where paradoxes surface

relevant implication: no obvious approach for formalizing predicative statements

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Outline

Aim

Fitch-Style Rules: PC

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Fitch-Style Rules: PC

'structural' rules: PREM, HYP, REIT

deduction rules:

MP $A, A \supset B/B$ CP From a subproof starting with the hypothesis A and ending with B, to infer $A \supset B$. ADJ $A, B/A \land B$ SIM $A \land B/A$ and $A \land B/B$ ADD $A/A \lor B$ and $B/A \lor B$ DIL $A \lor B, A \supset C, B \supset C/C$ EI $A \supset B, B \supset A/A \equiv B$ EE $A \equiv B/A \supset B$ and $A \equiv B/B \supset A$ DN $\neg \neg A/A$ RAA $A \supset B, A \supset \neg B/\neg A$

subproof is *closed* iff a formula was derived from it by CP

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

1 PREM $p \supset \neg q$ 2 $(r \supset r) \supset q$ PREM 3 HYP р 4 HYP |r 5 $r \supset r$ 4, 4; CP 6 $(r \supset r) \supset q$ 2; REIT 7 5, 6; MP q 8 3, 7; CP $p \supset q$ 9 1, 8; RAA $\neg p$

paradox in line 8; $p \supset \neg q, (r \supset r) \supset q \vdash_{PCR} \neg p$ not paradoxical

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

PREM 1 $p \supset \neg q$ 2 $(r \supset r) \supset q$ PREM 3 HYP р $\begin{vmatrix} r \\ r \\ r \supset r \end{vmatrix}$ 4, 4; CP 2: REIT4 5 6 7 5, 6; MP q 8 3, 7; CP $p \supset q$ 9 1, 8; RAA $\neg p$

paradox in line 8; $p \supset \neg q, (r \supset r) \supset q \vdash_{PCR} \neg p$ not paradoxical

Definition A **PC**-proof of A from Γ ...

Definition $\Gamma \vdash_{PC} A$ iff there is a **PC**-proof of A from Γ .

Definition $\vdash_{PC} A \text{ iff } \emptyset \vdash_{PC} A.$

In pedagogical context: derivable rules of inference (equilibrium between heuristic facility and set of rules)

Aim

Fitch-Style Rules: PC

lelevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

```
・ロト・西ト・山田・山田・山下
```

Outline

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

- Eliminating Nested Arrows
- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux
- **Algebraic Semantics**
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Fitch-S

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

17 [17 23 75]

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ● ② へ ⊙

(1) a proof in **E** that A_1, \ldots, A_n entail(s) *B* (definition: A&B, *Entailment* I, §23.6)

Aim

itch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

(1) a proof in **E** that A_1, \ldots, A_n entail(s) *B* (definition: A&B, *Entailment* I, §23.6) (1) iff $(A_1 \land \ldots \land A_n) \rightarrow B$ is a theorem of **E**

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

(1)a proof in **E** that A_1, \ldots, A_n entail(s) B (definition: A&B, Entailment I, §23.6) (1) iff $(A_1 \land \ldots \land A_n) \rightarrow B$ is a theorem of **E** generalize to other relevant logics L:

(2) A_1, \ldots, A_n L-entail B

Relevant Consequence Relation

(1) a proof in **E** that A_1, \ldots, A_n entail(s) *B* (definition: A&B, *Entailment* I, §23.6) (1) iff $(A_1 \land \ldots \land A_n) \rightarrow B$ is a theorem of **E** generalize to other relevant logics **L**: (2) A_1, \ldots, A_n **L**-entail *B*

Routley-Meyer semantics

(2) iff, for all **L**-models, all worlds that verify A_1, \ldots, A_n verify B

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

(1) a proof in **E** that A_1, \ldots, A_n entail(s) *B* (definition: A&B, *Entailment* I, §23.6) (1) iff $(A_1 \land \ldots \land A_n) \rightarrow B$ is a theorem of **E** generalize to other relevant logics **L**: (2) A_1, \ldots, A_n **L**-entail *B*

Routley-Meyer semantics (2) iff, for all L-models, all worlds that verify A_1, \ldots, A_n verify B L-valid formula: verified by every 0-world of every L-model 0-worlds consistent and \neg -complete (PC-valid \Rightarrow L-valid)

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

(1) a proof in **E** that A_1, \ldots, A_n entail(s) *B* (definition: A&B, *Entailment* I, §23.6) (1) iff $(A_1 \land \ldots \land A_n) \rightarrow B$ is a theorem of **E** generalize to other relevant logics **L**: (2) A_1, \ldots, A_n **L**-entail *B*

Routley-Meyer semantics (2) iff, for all L-models, all worlds that verify A_1, \ldots, A_n verify B L-valid formula: verified by every 0-world of every L-model 0-worlds consistent and \neg -complete (PC-valid \Rightarrow L-valid)

role and status of theorems (and valid formulas) unusual

· if (2), then n < 0; Ø L-entails nothing (not even theorems)

- · L-theorems bring one from premises to conclusion (by MP and ADJ)
- · (2) is Tarski (refl., mon., trans.)

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Outline

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux
- **Algebraic Semantics**
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Eliminating Nested Arrows

- \mathcal{W} formulas of language of **PC** ($p, q, \ldots, \neg, \lor, \land, \supset, \equiv$)
- $\mathcal{W}^{\rightarrow}$ formulas of language of usual relevant logics
- \mathcal{W}^1 (no nested arrows) formulas of language of **PCR**

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Eliminating Nested Arrows

- \mathcal{W} formulas of language of **PC** ($p, q, \ldots, \neg, \lor, \land, \supset, \equiv$)
- $\mathcal{W}^{\rightarrow}$ formulas of language of usual relevant logics
- \mathcal{W}^1 (no nested arrows) formulas of language of **PCR**

to formalize statements from natural languages into $\ensuremath{\mathcal{W}}^1$ hardly hindrance

most sentences of form

 $A \rightarrow (B \rightarrow C)$

equivalent to sentence of form

 $(A \land B) \rightarrow C$

or to metalinguistic

 $A \vdash B \rightarrow C$

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Vorlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

Aim

- Fitch-Style Rules: PC
- **Relevant Consequence Relation**
- **Eliminating Nested Arrows**
- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux
- **Algebraic Semantics**
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Stars and Carrying them Over

RHYP introduce any member of W with a star attached to it RHYP starts a (new) *starred subproof* Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Stars and Carrying them Over

RHYP introduce any member of \mathcal{W} with a star attached to it RHYP starts a (new) *starred subproof*

the intention:

restriction: no subproof can be started within a starred subproof

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Carrying over stars

we better have an interpretation of the arrow

 $(M \rightarrow)$ $A \rightarrow B$ means that reasons to accept A constitute reasons to accept B and that reasons to reject B constitute reasons to reject A. Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Carrying over stars

we better have an interpretation of the arrow

- $(M \rightarrow)$ $A \rightarrow B$ means that reasons to accept A constitute reasons to accept B and that reasons to reject B constitute reasons to reject A.
- (M¬) One has reasons to accept ¬A iff one has reasons to reject A.
 One has reasons to reject ¬A iff one has reasons to accept A.
- (M \land) One has reasons to accept $A \land B$ iff one has reasons to accept A as well as reasons to accept B. If one has reasons to reject A or reasons to reject B, then one has reasons to reject $A \land B$.
- (M∨) If one has reasons to accept A or reasons to accept B, then one has reasons to accept A ∨ B.
 One has reasons to reject A ∨ B iff one has reasons to reject A as well as reasons to reject B.

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

this gives us:

we have reasons to accept $\neg (A \land B)$ \updownarrow we have reasons to reject $A \land B$ \uparrow we have reasons to reject A or to reject B \updownarrow we have reasons to accept $\neg A$ or to accept $\neg B$ \Downarrow we have reasons to accept $\neg A \lor \neg B$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

modifying the 'implications' to 'equivalences' creates problem:

```
we have reasons to accept \neg (A \land B)

\uparrow

we have reasons to reject A \land B

\uparrow

we have reasons to reject A or to reject B

or to merely reject A \land B

\uparrow?

we have reasons to accept \neg A or to accept \neg B

or to merely accept \neg A \lor \neg B

\uparrow

we have reasons to accept \neg A \lor \neg B

\uparrow

we have reasons to accept \neg A \lor \neg B
```

answer depends on the merely parts

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

positive answer is justifiable by

if our knowledge became total *and would still constitute a* reason to reject $A \land B$, then it would constitute a reason to reject A or to reject B or to reject both A and B.

if our knowledge became total *and would still constitute a* reason to accept $\neg A \lor \neg B$, then it would constitute a reason to accept $\neg A$ or to accept $\neg B$ or to accept both $\neg A$ and $\neg B$

Aim

Fitch-Style Rules: PC

Relevant Consequence Relatior

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Vorlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

positive answer is justifiable by

if our knowledge became total *and would still constitute a* reason to reject $A \land B$, then it would constitute a reason to reject A or to reject B or to reject both A and B.

if our knowledge became total *and would still constitute a* reason to accept $\neg A \lor \neg B$, then it would constitute a reason to accept $\neg A$ or to accept $\neg B$ or to accept both $\neg A$ and $\neg B$

these justify a further meaning postulate:

(M∧∨) One has reasons to merely reject ¬A ∧ ¬B iff one has reasons to merely accept A ∨ B.
 One has reasons to merely reject A ∧ B iff one has reasons to merely accept ¬A ∨ ¬B.

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Vorlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

positive answer is justifiable by

if our knowledge became total *and would still constitute a* reason to reject $A \land B$, then it would constitute a reason to reject A or to reject B or to reject both A and B.

if our knowledge became total *and would still constitute a* reason to accept $\neg A \lor \neg B$, then it would constitute a reason to accept $\neg A$ or to accept $\neg B$ or to accept both $\neg A$ and $\neg B$

these justify a further meaning postulate:

 $(M \land \lor)$ One has reasons to merely reject $\neg A \land \neg B$ iff one has reasons to merely accept $A \lor B$. One has reasons to merely reject $A \land B$ iff one has reasons to merely accept $\neg A \lor \neg B$.

don't suppose total knowledge: $A \to (B \lor C) \nvDash_{PCR} (A \to B) \lor (A \to C)$

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Norlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson
(C1) same meaning in view of the meaning postulates: $A \supset B$ and $\neg A \lor B$ $A \equiv B$ and $(A \supset B) \land (B \supset A)$ $A \land (B \lor C)$ and $(A \land B) \lor (A \land C)$ $\neg \neg A$ and A $\neg (A \lor B)$ and $\neg A \land \neg B$ etc.

mutual tautological entailments

Ain

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

(C1) same meaning in view of the meaning postulates: $A \supset B$ and $\neg A \lor B$ $A \equiv B$ and $(A \supset B) \land (B \supset A)$ $A \land (B \lor C)$ and $(A \land B) \lor (A \land C)$ $\neg \neg A$ and A $\neg (A \lor B)$ and $\neg A \land \neg B$ etc.

mutual tautological entailments

(C2) 'Simple weakenings': SIM, ADD, etc.

tautological entailments

Ain

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

(C1) same meaning in view of the meaning postulates: $A \supset B$ and $\neg A \lor B$ $A \equiv B$ and $(A \supset B) \land (B \supset A)$ $A \land (B \lor C)$ and $(A \land B) \lor (A \land C)$ $\neg \neg A$ and A $\neg (A \lor B)$ and $\neg A \land \neg B$ etc.

mutual tautological entailments

(C2) 'Simple weakenings': SIM, ADD, etc.

tautological entailments

(C3) rules with a major and a minor (local) premise ex. YES: RMP: $A^*, A \rightarrow B/B^*$ ex. NO: DS: $\neg A^*, A \lor B/\neg A$

Ain

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

(C1) same meaning in view of the meaning postulates: $A \supset B$ and $\neg A \lor B$ $A \equiv B$ and $(A \supset B) \land (B \supset A)$ $A \land (B \lor C)$ and $(A \land B) \lor (A \land C)$ $\neg \neg A$ and A $\neg (A \lor B)$ and $\neg A \land \neg B$ etc.

mutual tautological entailments

(C2) 'Simple weakenings': SIM, ADD, etc.

tautological entailments

(C3) rules with a major and a minor (local) premise ex. YES: RMP: $A^*, A \rightarrow B/B^*$ ex. NO: DS: $\neg A^*, A \lor B/\neg A$

(C4) ADJ-like steps: only starred if both local premises starred

Ain

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Outline

Aim

- Fitch-Style Rules: PC
- **Relevant Consequence Relation**
- Eliminating Nested Arrows
- Stars and Carrying them Over

Fitch-Style Rules: PCR

- Worlds Semantics and Tableaux
- **Algebraic Semantics**
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

RHYP

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

RHYP

RREIT (only) formulas of the form $A \rightarrow B$ may be reiterated into a starred subproof

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

RHYP

RREIT (only) formulas of the form $A \rightarrow B$ may be reiterated into a starred subproof

```
ADJ A^*, B^*/A \wedge B^*

SIM A \wedge B^*/A^* and A \wedge B^*/B^*

ADD A^*/A \vee B^* and B^*/A \vee B^*

MI A \supset B^* \parallel \neg A \vee B^*

ME A \equiv B^* \parallel (A \supset B) \wedge (B \supset A)^*

DN \neg \neg A^* \parallel A^*

ND \neg (A \vee B)^* \parallel \neg A \wedge \neg B^*

NC \neg (A \wedge B)^* \parallel \neg A \vee \neg B^*

DIST A \wedge (B \vee C)^*/(A \wedge B) \vee (A \wedge C)^*
```

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

RHYP

RREIT (only) formulas of the form $A \rightarrow B$ may be reiterated into a starred subproof

```
ADJ A^*, B^*/A \wedge B^*
 SIM A \wedge B^* / A^* and A \wedge B^* / B^*
ADD A^*/A \lor B^* and B^*/A \lor B^*
   MI A \supset B^* \parallel \neg A \lor B^*
   ME A \equiv B^* \parallel (A \supset B) \land (B \supset A)^*
   DN \neg \neg A^* \parallel A^*
   ND \neg (A \lor B)^* \parallel \neg A \land \neg B^*
   NC \neg (A \land B)^* \parallel \neg A \lor \neg B^*
DIST A \wedge (B \vee C)^* / (A \wedge B) \vee (A \wedge C)^*
RMP A^*, A \rightarrow B/B^*
RDIL A \lor B^*, A \to C, B \to C/C^*
RMT \neg B^*, A \rightarrow B / \neg A^*
 RCP From a subproof \langle A^*, \ldots, B^* \rangle, to infer A \to B.
```

also OK without stars

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

some properties:

- (1) **PCR** is a conservative extension of **PC**: if $A \in W$, then $\vdash_{PCR} A$ iff $\vdash_{PC} A$.
- (2) For all $A \in \mathcal{W}$, $\vdash_{\mathsf{PCR}} A$ iff $\vdash_{\mathsf{PCR}} \neg A \rightarrow A$.
- (3) $A \rightarrow B$ is a **PCR**-theorem iff it is a tautological entailment.
- (4) If ⊢_{PCR} A ↔ B and D is obtained by replacing the subformula A in C by B, then ⊢_{PCR} C ↔ D. (Replacement of Relevant Equivalents)
- (5) Replacement of (Material) Equivalents does not hold in **PCR**. Example $\nvdash_{PCR} (p \rightarrow q) \equiv ((p \lor (r \land \neg r)) \rightarrow q).$
- (6) Derivable rules: $A \to (B \land C) \parallel (A \to B) \land (A \to C)$ $(A \lor B) \to C \parallel (A \to C) \land (B \to C)$
- (7) Negative results:

 $\begin{array}{ll} B \nvDash_{\mathsf{PCR}} A \to B & \neg A \nvDash_{\mathsf{PCR}} A \to B \\ \neg (A \to B) \nvDash_{\mathsf{PCR}} A & \neg (A \to B) \nvDash_{\mathsf{PCR}} \neg B \\ \text{In general no implication paradox for arrow.} \end{array}$

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

that REIT need to be restricted:

1	$\neg p$	PREM
2	$\neg p \lor (p ightarrow q)$	1; ADD
3	<i>p</i> *	RHYP
4	$\neg p \lor (p ightarrow q)$	2; REIT !
5	$p \rightarrow q$	3, 4; DS
6	q^*	3, 5; RMP
7	$oldsymbol{ ho} ightarrow oldsymbol{q}$	3, 6; RCP

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Outline

Aim

- Fitch-Style Rules: PC
- **Relevant Consequence Relation**
- **Eliminating Nested Arrows**
- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux
- Algebraic Semantics
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

 $M = \langle W, w_0, v \rangle$

Ain

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

 $M = \langle W, w_0, v \rangle$ W a set Ain

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

 $M = \langle W, w_0, v \rangle$ W a set

 $w_0 \in W$

Ain

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

$$\begin{split} M &= \langle W, w_0, v \rangle \\ W \text{ a set} \\ w_0 &\in W \\ v \colon \mathcal{W}^1 \times W \to \{0, 1\} \text{ fulfils:} \\ \text{SPCR1} \quad v(\neg A, w_0) = 1 \text{ iff } v(A, w_0) = 0 \\ \text{SPCR2} \quad v(A \to B, w_0) = 1 \text{ iff, for all } w_i \in W, \\ \quad v(A, w_i) \leq v(B, w_i) \text{ and } v(\neg B, w_i) \leq v(\neg A, w_i) \\ \text{SPCR3} \quad v(A \lor B, w_i) = \max(v(A, w_i), v(B, w_i)) \\ \text{SPCR4} \quad v(\neg \neg A, w_i) = v(A, w_i) \\ \text{SPCR5} \quad v(\neg (A \lor B), w_i) = \min(v(\neg A, w_i)), v(\neg B, w_i)) \end{split}$$

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

 $M = \langle W, w_0, v \rangle$ W a set $w_0 \in W$ $v: \mathcal{W}^1 \times \mathcal{W} \to \{0, 1\}$ fulfils: SPCR1 $v(\neg A, w_0) = 1$ iff $v(A, w_0) = 0$ SPCR2 $v(A \rightarrow B, w_0) = 1$ iff, for all $w_i \in W$, $v(A, w_i) < v(B, w_i)$ and $v(\neg B, w_i) < v(\neg A, w_i)$ $v(A \lor B, w_i) = \max(v(A, w_i), v(B, w_i))$ SPCR3 SPCR4 $v(\neg \neg A, w_i) = v(A, w_i)$ $v(\neg (A \lor B), w_i) = \min(v(\neg A, w_i)), v(\neg B, w_i))$ SPCR5

 $\{A \mid v(A, w_0) = 1\}$ is consistent and negation-complete

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

 $M = \langle W, w_0, v \rangle$ W a set $w_0 \in W$ $v: \mathcal{W}^1 \times \mathcal{W} \to \{0, 1\}$ fulfils: SPCR1 $v(\neg A, w_0) = 1$ iff $v(A, w_0) = 0$ SPCR2 $v(A \rightarrow B, w_0) = 1$ iff, for all $w_i \in W$, $v(A, w_i) < v(B, w_i)$ and $v(\neg B, w_i) < v(\neg A, w_i)$ SPCR3 $v(A \lor B, w_i) = \max(v(A, w_i), v(B, w_i))$ SPCR4 $v(\neg \neg A, w_i) = v(A, w_i)$ $v(\neg (A \lor B), w_i) = \min(v(\neg A, w_i)), v(\neg B, w_i))$ SPCR5 $\{A \mid v(A, w_0) = 1\}$ is consistent and negation-complete $M \Vdash A$ iff $v(A, w_0) = 1$ M model of Γ iff M verifies all members of Γ $\Gamma \models A$ iff all models of Γ verify A

 \models *A* iff all models verify *A*.

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

 $M = \langle W, w_0, v \rangle$ W a set $w_0 \in W$ $v: \mathcal{W}^1 \times \mathcal{W} \rightarrow \{0, 1\}$ fulfils: SPCR1 $v(\neg A, w_0) = 1$ iff $v(A, w_0) = 0$ SPCR2 $v(A \rightarrow B, w_0) = 1$ iff, for all $w_i \in W$, $v(A, w_i) < v(B, w_i)$ and $v(\neg B, w_i) < v(\neg A, w_i)$ SPCR3 $v(A \lor B, w_i) = \max(v(A, w_i), v(B, w_i))$ SPCR4 $v(\neg \neg A, w_i) = v(A, w_i)$ $v(\neg (A \lor B), w_i) = \min(v(\neg A, w_i)), v(\neg B, w_i))$ SPCR5 $\{A \mid v(A, w_0) = 1\}$ is consistent and negation-complete $M \Vdash A$ iff $v(A, w_0) = 1$ M model of Γ iff M verifies all members of Γ $\Gamma \models A$ iff all models of Γ verify A \models *A* iff all models verify *A*.

tableau-method: PM

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Outline

Aim

- Fitch-Style Rules: PC
- **Relevant Consequence Relation**
- **Eliminating Nested Arrows**
- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux

Algebraic Semantics

- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Algebraic Semantics

ΡM

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

57 [57 57 75]

Outline

Aim

- Fitch-Style Rules: PC
- **Relevant Consequence Relation**
- Eliminating Nested Arrows
- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux
- Algebraic Semantics
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Ain

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

58 [58 61 75]

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへで

Embarrassing Strength?

examples: $A \rightarrow B \vdash_{PCR} A \rightarrow (A \land B)$ $A \rightarrow B \vdash_{PCR} (A \land C) \rightarrow (B \land C)$ Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Embarrassing Strength?

examples: $A \rightarrow B \vdash_{PCR} A \rightarrow (A \land B)$ $A \rightarrow B \vdash_{PCR} (A \land C) \rightarrow (B \land C)$

cause: that inference relation is not relevant: for all Γ , $\Gamma \vdash_{PCR} A \rightarrow A$ $\Gamma \vdash_{PCR} C \rightarrow C$ Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Embarrassing Strength?

examples: $A \rightarrow B \vdash_{\mathsf{PCR}} A \rightarrow (A \land B)$ $A \rightarrow B \vdash_{\mathsf{PCR}} (A \land C) \rightarrow (B \land C)$

cause: that inference relation is not relevant: for all Γ , $\Gamma \vdash_{PCR} A \rightarrow A$ $\Gamma \vdash_{PCR} C \rightarrow C$

independent arguments for relevance of the arrow in PCR

(i) $\emptyset \vdash_{PCR} A \rightarrow B$ iff $A \rightarrow B$ is tautological entailment

(ii) the valid statements $\Gamma \vdash_{\mathbf{PCR}} A \to B \text{ iff } \Gamma \vdash_{\mathbf{PCR}} (A_1 \to B_1) \land \ldots \land (A_1 \to B_1)$ are identical to those for first degree entailments

so blame on inference relation, not on implication

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Outline

Aim

- Fitch-Style Rules: PC
- **Relevant Consequence Relation**
- **Eliminating Nested Arrows**
- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux
- **Algebraic Semantics**
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

62 [62 67 75]

・ロト・日本・日本・日本・日本・日本

R-M semantics

remember:

· A_1, \ldots, A_n L-entail *B* iff, for all *M*, *B* is verified by every world that verifies A_1, \ldots, A_n

- *M* verifies *A* iff v(A, 0) = 1
- · every model verifies every L-theorem

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● りへぐ

R-M semantics

remember:

· A_1, \ldots, A_n L-entail *B* iff, for all *M*, *B* is verified by every world that verifies A_1, \ldots, A_n

- *M* verifies *A* iff v(A, 0) = 1
- · every model verifies every L-theorem

extending **PC** with L: $\Gamma \vDash_{PCL} A$ iff, every model of Γ verifies A

Fitch-style rules

remember: originally for **L**-theorems only

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

R-M semantics

remember:

· A_1, \ldots, A_n L-entail *B* iff, for all *M*, *B* is verified by every world that verifies A_1, \ldots, A_n

- *M* verifies *A* iff v(A, 0) = 1
- · every model verifies every L-theorem

extending **PC** with L: $\Gamma \vDash_{PCL} A$ iff, every model of Γ verifies A

Fitch-style rules

remember: originally for L-theorems only

extending to $\Gamma \vdash_{L} A$: introduce premises with index set $\{0\}$

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

R-M semantics

remember:

· A_1, \ldots, A_n L-entail *B* iff, for all *M*, *B* is verified by every world that verifies A_1, \ldots, A_n

- *M* verifies *A* iff v(A, 0) = 1
- · every model verifies every L-theorem

extending **PC** with L: $\Gamma \vDash_{PCL} A$ iff, every model of Γ verifies A

Fitch-style rules

remember: originally for L-theorems only

extending to $\Gamma \vdash_{L} A$: introduce premises with index set $\{0\}$

extending PC with L: introduce premises with index set \emptyset

Ain

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

R-M semantics

remember:

· A_1, \ldots, A_n L-entail *B* iff, for all *M*, *B* is verified by every world that verifies A_1, \ldots, A_n

- *M* verifies *A* iff v(A, 0) = 1
- · every model verifies every L-theorem

extending **PC** with L: $\Gamma \vDash_{PCL} A$ iff, every model of Γ verifies A

Fitch-style rules

remember: originally for L-theorems only

extending to $\Gamma \vdash_{\mathsf{L}} A$: introduce premises with index set $\{0\}$

extending **PC** with L: introduce premises with index set \emptyset weakest Tarski inference relation \vdash_{PCL} that extends $\Gamma \vdash_{PC} A$ and $(A_1, \ldots, A_n L$ -entail B) and (if A is a L-theorem, then $\emptyset \vdash_{PCL} A$)

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Outline

Aim

- Fitch-Style Rules: PC
- **Relevant Consequence Relation**
- **Eliminating Nested Arrows**
- Stars and Carrying them Over
- Fitch-Style Rules: PCR
- Worlds Semantics and Tableaux
- **Algebraic Semantics**
- **Embarrassing Strength?**
- A General Recipe and a Lesson
- Peter's Complaint

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

68 [68 75 75]

・ロ・・日・・日・・日・ うへぐ

Peter's Complaint

Peter wanted: if A_1, \ldots, A_n and B belong to the language of L, then $A_1, \ldots, A_n \vdash_{PC^L} B$ iff $A_1, \ldots, A_n B_n L$ -entail B.

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

Peter wanted: if A_1, \ldots, A_n and B belong to the language of \mathbf{L} , then $A_1, \ldots, A_n \vdash_{\mathbf{PC}^{\mathsf{L}}} B$ iff $A_1, \ldots, A_n B_n \mathbf{L}$ -entail B.

(1) There is a way to have PC-theorems but not L-theorems derivable from any Γ

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● のへで

Peter's Complaint

Peter wanted: if A_1, \ldots, A_n and B belong to the language of \mathbf{L} , then $A_1, \ldots, A_n \vdash_{\mathbf{PC}^{\mathsf{L}}} B$ iff $A_1, \ldots, A_n B_n \mathbf{L}$ -entail B.

(1) There is a way to have PC-theorems but not L-theorems derivable from any Γ

trouble (for **R** and many other relevant logics):

 $\begin{array}{l} \Gamma \vdash_{\mathbf{PC}^{\mathbf{R}}} A \lor \neg A \text{ for all } \Gamma \\ \text{and} \\ (A \lor \neg A) \to (((A \lor \neg A) \to B) \to B) \\ \text{so} \end{array}$

$$\Gamma \vdash_{\mathbf{PC}^{\mathsf{R}}} ((A \lor \neg A) \to B) \to B$$

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

(2) Peter found a way to obtain what he wanted by introducing two negations:

the classical negation \neg from PC

the paraconsistent negation \sim from the relevant logics

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson
(2) Peter found a way to obtain what he wanted by introducing two negations:

the classical negation \neg from PC

the paraconsistent negation \sim from the relevant logics

we still have $\Gamma \vdash_{\mathbf{PC}^{\mathsf{R}}} ((A \lor \neg A) \to B) \to B$ but not $\Gamma \vdash_{\mathbf{PC}^{\mathsf{R}}} ((A \lor \sim A) \to B) \to B$ Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

(2) Peter found a way to obtain what he wanted by introducing two negations:

the classical negation \neg from PC

the paraconsistent negation \sim from the relevant logics

we still have $\Gamma \vdash_{\mathsf{PC}^{\mathsf{R}}} ((A \lor \neg A) \to B) \to B$ but not $\Gamma \vdash_{\mathsf{PC}^{\mathsf{R}}} ((A \lor \sim A) \to B) \to B$

intriging, although not exactly the original intention

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested

Stars and Carrying hem Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Thanks.

Questions?

Aim

Fitch-Style Rules: PC

Relevant Consequence Relation

Eliminating Nested Arrows

Stars and Carrying them Over

Fitch-Style Rules: PCR

Worlds Semantics and Tableaux

Algebraic Semantics

Embarrassing Strength?

A General Recipe and a Lesson

Peter's Complaint