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1 Introductory Remarks

adaptive logics interpret a premise set “as normally as possible’” with
respect to some standard of normality

they explicate reasoning processes that display an internal (and possibly
an external) dynamics

external dynamics: non-monotonicity

internal dynamics: revise conclusions as insights in premises grow



1 Introductory Remarks

adaptive logics interpret a premise set “as normally as possible” with
respect to some standard of normality

they explicate reasoning processes that display an internal (and possibly
an external) dynamics

external dynamics: non-monotonicity

internal dynamics: revise conclusions as insights in premises grow

technical reason for dynamics:
absence of positive test for derivability (at predicative level)

- many reasoning patterns explicated by an adaptive logic surv
- number of known inference relations characterized by an adaptive logic



many (not all) adaptive logics seem to have a common structure

some can be given this structure under a translation

the structure is central for
proof theory, semantics, soundness and completeness,
proofs of further properties, computational aspects, ...

whence the plan:

- describe the structure: the SF (standard format)

- define the proof theory and semantics from the SF

- prove as many properties as possible by relying on the SF only

the results are provisional (as everything):

- not all adaptive logics have been phrased in SF

- 2 more general characterization may be possible
(with sets of properties depending on specifications)



2 The Standard Format

- lower limit logic
standard (monotonic, compact, ...) logic

- set of abnormalities (2
characterized by a (possibly restricted) logical form

- Strategy
Reliability, Minimal Abnormality, Simple strategy, ...

upper limit logic:
ULL = LLL 4 axiom/rule that trivializes abnormalities
semantically: the LLL-models that verify no abnormality

general idea behind adaptive logics:
Cnar(T') : Cnpp (') + what follows if as many members of 2 are false
as the premises permit



Example: the inconsistency-adaptive ACLulN™

- lower limit logic: CLuN

- set of abnormalities: @ = {I(AN~A) | A € F}

- Strategy: Minimal Abnormality

upper limit logic:
CL = CLuN + (AAN~A) DB
semantically: the CLulN-models that verify no inconsistency

corrective adaptive logic (if CL is the standard)



Example: logic of inductive generalization: IL™

- lower limit logic: CL
- set of abnormalities: Q = {FAANI~A | A € F°}

- Strategy: Minimal Abnormality

upper limit logic:
UCL = CL + JaA(a) D VaA(a)
semantically: the uniform CL-models (v(w") € {@,D(T)})

ampliative adaptive logic (if CL is the standard)



Example: Strong Consequence Relation (Rescher—Manor)

consider ACLulN™ with classical negation (=) occurring in the language
let W7 be the closed formulas that do not contain ~

the theorems in W% are those of CL (with — the standard negation)

et T~ = {~—A | A €T}

where TU {A} CW?%*: T =Strong A ifF I~ E=acpun™ A

corrective consequence relation characterized by an adaptive logic
(under a translation)



Conventions

e to simplify the metatheoretic proofs, we add (where necessary) all
logical symbols of CL to the LLL

- harmless
- these symbols need not occur in the premises or conclusion

- notation: =, 3, M, U, (MNa), (W), and =

so LLL contains CL (in one sense, even if it may be weaker in another)

@ Dab-formula: classical disjunction of the members of a finite A C (2
notation: Dab(A)



3 Proofs
- rules of inference (determined by LLL and 2)

- @ marking definition (determined by 2 and the stategy)

dynamics of the proofs controlled by attaching conditions (finite subsets
of 1) to derived formulas

line of annotated proof: number, formula, justification, condition
the rules govern the conditions

marking definition: determines for every line @ at every stage s of a proof

the condition of 2

whether 2 is IN or OUT in view of { the Dab-formulas derived



Rules of inference  (depend on LLL and €2, not on the strategy)

PREM If AeTI:

A 0
RU If Ayy...,An F111, B: A1 Ay

B A]_U...UAn

RC If Ay,...,Ap 1, B U Dab(@) A1 Aq

B AlU...UAnU@

for example:

P, PO qFcLuN 4
~p, PV qghFcLuN qV (p A ~p)



Marking definition

proceeds in terms of the minimal Dab-formulas that are derived at the
stage of the proof

Dab(A) is a minimal Dab-formula at stage s:
Dab(A) derived on line with condition @
no Dab(A’) with A’ C A derived on line with condition



Marking Definition for Reliability

where Dab(A1), ..., Dab(Ay) are the minimal Dab-formulas derived
on condition @ at stage s,

Us(F):A1U...UAn

Definition
where A is the condition of line 7,
line ¢ is marked at stage s iff AN Ug(T) # 0



Marking Definition for Minimal Abnormality

where Dab(A1), ..., Dab(Ay) are the minimal Dab-formulas derived
on condition @ at stage s,

®o(T): set of all sets that contain one member of each A;
®*(I'): contains, for any ¢ € ®2(I'), CnyL(e) N
®5(T): ¢ € ®%(T') that are not proper supersets of a ¢’ € ®*(T")

minimal sets of abnormalities that should be true
in order for all Dab-formulas derived at stage s to be true

Definition

where A is the formula and A is the condition of line z,

line 7 is marked at stage s iff,

(i) there is no ¢ € ®4(T') such that p N A =0, or

(ii) for some ¢ € ®4(I'), there is no line at which A is derived on a
condition ©® for which p N ©® =0



Marking Definition for the Simple strategy

Definition
where A is the condition of line ¢,
line ¢ is marked at stage s iff some A € A is derived on condition

only suitable iff, for all I',
I' b1, Dab(A) iff forsome Ae A, I'k11, A.

in other words: if Dab(A) is derived on condition 0,

then, for some A € A, A is derivable on condition

in this case, Reliability and Minimal Abnormality both coincide with the
Simple Strategy



Derivability at a stage vs. final derivability

idea: A derived on an unmarked line 2
and the proof is stable with respect to 2

stability concerns a specific line

Definition
A is finally derived from I' at line © of a proof at stage s iff
(i) A is the second element of line ¢,
(ii) line 7 is unmarked at stage s, and
(iii) any extension of the proof may be further extended in such a way
that line 2 is unmarked.

Definition
I' Fa1, A (A is finally AL-derivable from I') iff A is finally derived at a
line of a proof from I'.



Two remarks:

even at the predicative level, there are criteria for final derivability

- ULL extends LLL by validating some further rules
- AL extends LLL by validating some applications of those ULL-rules



Extremely simple propositional example for ACLuN" (and ACLulN™)

1 (pAqg) At PREM 0
2 ~p\V T PREM 0
3 ~q\V s PREM 0
4 ~p V ~q PREM 0
5 t D ~p PREM 0



Extremely simple propositional example for ACLuN" (and ACLulN™)

1 (pAqg) At PREM 0
2 ~p\Vr PREM 0
3 ~q\V s PREM 0
4 ~p V ~q PREM 0
5 t D ~p PREM 0
6 r 1, 2; RC {p A ~p}



Extremely simple propositional example for ACLuN" (and ACLulN™)

1 (pAqg) At PREM 0
2 ~p\Vr PREM 0
3 ~q\V s PREM 0
4 ~p V ~q PREM 0
5 t D ~p PREM 0
6 r 1, 2; RC {p A ~p}
7 s 1, 3; RC {an~q}



Extremely simple propositional example for ACLuN" (and ACLulN™)

1 (pAq) At PREM 0
2 ~p\Vr PREM 0
3 ~q\V s PREM 0
4 ~p V ~gq PREM 0
5 t D ~p PREM 0
6 r 1, 2; RC {pN~p} /
7 s 1, 3; RC {g N\ ~q} +/
8 (pA~DP)V(gA~g) 1,4 RU 0



Extremely simple propositional example for ACLuN" (and ACLulN™)

1 (pAq) At PREM 0

2 ~p\Vr PREM 0

3 ~qV 8 PREM 0

4 ~p V ~q PREM 0

5 tD~p PREM 0

6 r 1, 2; RC {p AN ~p}
7 s 1, 3; RC {a A ~q}

8 (pA~p)V(gA~q) 1, 4; RU 0

9 pA~D 1, 5; RU 0

nothing interesting happens when the proof is continued

no mark will be removed or added



4 Semantics

Dab(A) is a minimal Dab-consequence of T

I 'ZLLL Dab(A) and, for all A’ C A, I‘#LLL Dab(A’)

where Dab(A1), Dab(As3), ... are the minimal Dab-consequences of T,
UT)=A1UAU...

where M is a LLL-model: Ab(M)={A € Q| M = A}

the AL-semantics selects some LLL-models of I' as AL-models of I

the selection depends on {2 and on the strategy



Reliability
a LLL-model M of I is reliable iff Ab(M) C U(TI")

I' Eapr A iff all reliable models of I' verify A

Minimal Abnormality

a LLL-model M of I is minimally abnormal

iii
there is no LLL-model M’ of T" for which Ab(M’) C Ab(M)

I' Epapm A iff all minimally abnormal models of I' verify A

Simple strategy: either of the above if the Simple strategy is suitable



ULL

LLL

Abnormal I

flip-flop (if ©Q not suitably restricted or because of strategy)

- ~ LLL

Normal I'

there are no AL-models, but only AL-models of some I'




5 Some Metatheory

5.1
5.2
5.3
5.4
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Preliminaries

On the ULL

Strong Reassurance
Soundness and Completeness

Some Further properties



5.1 Preliminaries

LLL is reflexive, transitive, monotonic, compact, contains CL (see
before) and has a characteristic semantics

2 : all formulas of a (possibly restricted) logical form F

Provisos:

. if A has the form F, then A b1, Dab(A) for some (finite) A € Q
- every A € () is falsified by a LLL-model

the provisos are only required for obtaining a standard ULL
by a standard procedure, not for the rest of the metatheory

strategy: we shall consider only Reliability and Minimal Abnormality
(the Simple strategy reduces to these where it is sensible)



5.2 On the ULL

Definition T |_ULL AiffT" U Q™ I_LLL A

viz. ULL: exactly as LLL, except that it trivializes abnormalities

Theorem 1

Where 2 is characterized by the logical form F + a (possibly empty)
restriction, ULL is LLL 4+ the axiom schema —F.

Proof.
(1) LLL + —F contains ULL: obvious
(2) ULL contains LLL 4+ —F:
suppose: B has the form F
there is a finite A € Q such that By, Dab(A)
for every C € A, Fyr ~C
so Fyr, ~Dab(A) and also Fyr - B



ULL = LLL + —F

ULL-semantics: the LLL-models that verify no member of (2

Theorem 2
LLL + the axiom schema —F is sound and complete w.r.t. the
ULL-semantics.

Obvious in view of the proof of Theorem 1.



Theorem 3
I' FyLr A iff there is a finite A C Q such that I' k11, AU Dab(A).
(Derivability Adjustment Theorem)

Proof.

The following six statements are equivalent:

I' -y A

TUQ bppp A Def. ULL
I UA™ Frpy, A for a finite IV C T and a finite A C Q LLL compact
IV b, AU Dab(A) for those TV and A LLL contains CL
I' b, AU Dab(A) for a finite A C Q LLL monotonic

‘motor’ for the adaptive logic: one tries to get as close to ULL as
possible by considering Dab(A) as false whenever T' permits so



obvious:

Theorem 4
ULL contains CL
ULL is reflexive, transitive, monotonic, and uniform

ULL is compact



5.3 Strong Reassurance

Stopperedness, Smoothness

if a model of the premisses is not selected, this is justified by the fact
that a selected model of the premisses is less abnormal

M%LL: the LLL-models of T
M"IP: the AL™-models of T
M’IZ: the AL"-models of T



Theorem 5
If M € MlIiLL — MP*, then there is a M’ € MP such that
Ab(M'") C Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. (holds vacuously if M1 = M%LL)
Consider M € M%LL — Mp, D1, Da,... list of all members of
Ag =0
Ajp1 =28, U{-Dj;1}
if Ab(M') C Ab(M) for some M’ of ' U A; U {—~D;.1}, otherwise
Ajt1 = A
A=AgUA{UAU...
I' U A has LLL-models (compactness of LLL + construction)



Theorem 5
If M € MlIiLL — MP*, then there is a M’ € MP such that
Ab(M'") C Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. (holds vacuously if MP = M%LL)
Consider M € M%LL — MI"T" I' UA has LLL-models

Step 1. If M’ is a model of T U A, then Ab(M') C Ab(M).

Suppose that there is a D; € Q such that D; € Ab(M') — Ab(M). Let
M'" be a model of T UA,_; for which Ab(M") C Ab(M). As

D; ¢ Ab(M), D; ¢ Ab(M'"). Hence M" is a model of

FrvAa;_ U {ﬁDj} and Ab(M'") C Ab(M). So —D; e A; C A, As M’
is @ model of TUA, D; ¢ Ab(M'"). But this contradicts the supposition.

=



Theorem 5
If M € M%LL — MZP?, then there is a M’ e M such that
Ab(M'") C Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. (holds vacuously if M = M%LL)
Consider M € MIfLL — MP'. T UA has LLL-models

Step 1. If M’ is a model of T U A, then Ab(M’') C Ab(M).

Step 2. Every model of ' U A is a minimal abnormal model of I.
Suppose that M’ is a model of T’ U A, but is not a minimal abnormal
model of I'. Hence [...] there is a model M" of T' for which

Ab(M”) C Ab(M').

It follows that M’ is a model of T U A. If it were not, then, as M is a
model of T, there is a =D; € A such that M’ verifies -D; and M
falsifies —~D;. But then M’ falsifies D, and M verifies Dj, which is
impossible in view of Ab(M") C Ab(M').

Consider any D; € Ab(M') — Ab(M") # 0. As M" is a model of

' UA;_ that falsifies Dj, it is a model of TUA;_; U{—D;}. As
Ab(M'") C Ab(M') and Ab(M") C Ab(M), Ab(M") C Ab(M). It
follows that A; = A;_; U {—=D;} and hence that =D, € A. But then
D; ¢ Ab(M'). Hence, Ab(M") = Ab(M’). So the supposition leads to
a contradiction.



Theorem 5
If M € MlIiLL — MP*, then there is a M’ € MP such that
Ab(M'") C Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. (holds vacuously if MP = M%LL)
Consider M € M%LL — MI"T" I' UA has LLL-models

Step 1. If M’ is a model of T U A, then Ab(M') C Ab(M).

Step 2. Every model of I' U A is a minimal abnormal model of I'.



Lemma
MPP C ME  (all Minimal Abnormal models are Reliable models)

Theorem 6
If M € MlIiLL — Mf then there is a M’ € Mf such that

Ab(M") C Ab(M). (Strong Reassurance for Reliability.)



Theorem 7
FHapr AffT Fr, AU Dab(A) and ANU(T) = @ for a finite A C Q.

Proof.

Both directions obvious in view of previous Lemma and the definition of
I' FApr A.



Theorem 7
FHapr AffT Fr, AU Dab(A) and ANU(T) = @ for a finite A C Q.

Theorem 8
L Eapr AIffT Frn AU Dab(A) and ANU(T) = @ for a finite A C Q.

Proof.

=

all models in M7, verify A
so I'U (Q — U(F))_' F1LILL A

so IVUA™ Frpy, A for finite IV C T and A C Q compact
so I/ FLLL AU Dab(A) CL
so I' Fr, AU Dab(A) monotonic
—

suppose there are LLL-models of T" and they all verify AU Dab(A)

so there are AL"-models of T Strong Reassurance
all AL"-models of T falsify Dab(A) ANUMT) =0

so all AL"-models of T verify A



Theorem 7
FHapr AffT Fr, AU Dab(A) and ANU(T) = @ for a finite A C Q.

Theorem 8
I'Eppr AIff T EFr, AU Dab(A) and ANU(T) = @ for a finite A C .

Lemma
r I_LLL A L Dab(A) iff T° IZLLL A L Dab(A).

Proof. By the soundness and completeness of LLL.



Theorem 7
FHapr AffT Fr, AU Dab(A) and ANU(T) = @ for a finite A C Q.

Theorem 8
I'Eppr AIff T EFr, AU Dab(A) and ANU(T) = @ for a finite A C .

Lemma
r I_LLL A L Dab(A) iff T° IZLLL A L Dab(A).

Corollary
' apr AIff L Eppr A.



5.5 Some Further properties

terminology
minimal Dab-consequence of I

®°(T"): set of all sets that contain one member of each minimal

Dab-consequence of I
®*(T"): contains, for every ¢ € ®°(T"), Cny () NN
®(I'): ¢ € &*(I') that are not proper supersets of a ¢’ € ®*(T")

Lemma
M € MP iff M € MELE and Ab(M) € @r.

Proof: long but perspicuous.



immediate or almost immediate consequences of the Lemma:

Theorem 9 each of the following obtains:

1.
2.
3.

MPF C MFT. Hence Cnpapr(I') © Cnapm ().
IfAe Q—-U(T), then =A € Cnapr(T).
If Dab(A) is a minimal Dab-consequence of I' and A € A, then

some M € M7P' verifies A and falsifies all members (if any) of
A — {A}.

?1 = ?nALm(I‘) whence CnALm(F) = CnALm(CnALm(I‘)).
(Fixed Point.)
? = rCnALr(I‘) whence CnALr(F) = C’n,ALr(C’nALr(F)). (Fixed
Point.)
. For all A C Q, Dab(A) € Cnar, () iff Dab(A) € Cnprn(T).

(Immunity.)

. IfT Eap, A for every A € IV, and TUTY Fap, B, then T Fay, B.

(Cautious Cut.)

. IfF T Eay, A for every A € IV, and T Fag, B, then TUTY Fay, B.

(Cautious Monotonicity.)



Theorem 10 each of the following obtains:

1. If T is normal, then ML = MT = M.
whence CnALr(F) = CnALm(F) = CnULL(F)-

If ' is normal, then U(I") = @ and only ULL-models of T" are minimally
abnormal.



Theorem 10 each of the following obtains:

1. If T' is normal, then MM = MM = M7,
whence Cnapr(I') = Cnapm(T) = Cnyrr(T).

2. If T" is abnormal and M%LL % (), then M}JLL C MP
and hence Cnayr(I') C Cnapm(T') C Cnyrr(T).

If T is abnormal, then M}JLL = 0.



Theorem 10 each of the following obtains:

1. If T" is normal, then MFLL = MpP = My
whence CnALr(F) = CnALm(F) = CnULL(F)-

2. If T is abnormal and M%LL %+ (0, then M}JLL C MP
and hence Cnarr(I') C Cnarm (') C Cnyrn(T).

3. MM C Mt C MT C MELE
whence Cnppr(T') € Cnapr(T) € Cnapm (') C€ Cnyrn(T).

MFLL C MP: from 1 and 2. My C M%LL is immediate in view of the
definition of a reliable model of T. M?" C Mf is item 1 of the previous
T heorem.



Theorem 10 each of the following obtains:

1. If T' is normal, then MFML = MM = M7,
whence Cnarr(I') = Cnapm(T) = Cnyrr(T).

2. If T" is abnormal and M%LL %+ (), then M}JLL C MP
and hence Cnayr(I') € Cnapm(T') C Cnyrr(T).

3. ML C M C M C mptE
whence Cnppr(I') C€ Cnapr(I') ©€ Cnapm(I') C© Cnyrp(T).

4. M¥ C MELLifF T U {A} is LLL-satisfiable for some A € @ — U(T).

Immediate in view of the definitions of a reliable model and I' Fo1r A.



Theorem 10 each of the following obtains:

1. If T' is normal, then MFML = MM = M7,
whence CnALr(F) = CnALm(I‘) = CnULL(F)-

2. If T" is abnormal and M%LL % (), then MFLL C MP
and hence Cnapr(I') C Cnparm (') C Cnyrn(T).

3. MM C Mt C MT C MELL
whence Cnppr(T') € Cnapr(T) € Cnapm (') € Cnyrn(T).

4. MT C MELLifF T U {A} is LLL-satisfiable for some A € @ — U(T).
5. C’ILLLL(F) C C’nALr(F) iff Mfw C M%LL.

= Suppose A € Cn11(T') — Cnagr(I'). So, forsome A € Q2 —U ("), all
M € MF falsify A whereas some M € M%LL — M7 verifies A.
< obvious.



Theorem 10 each of the following obtains:

1.

If T is normal, then MM = MM = M.
whence Cnapr(I') = Cnapm(T') = Cnyrr(T).

. If T' is abnormal and M%LL % (), then M}JLL C MP

and hence Cnayr(I') C Cnapm(T') C Cnyrr(T).

- MR C M C MY C MmEERE

whence Cnppr(I') C€ Cnapr(I') ©€ Cnapm(I') C© Cnyrp(T).

. ML C MELiff T'u {A} is LLL-satisfiable for some A € Q@ — U(T).
. CnpiL(T) C Cnpgr(T) iff Mfw C M%LL.
. M MEELiff there is a (possibly infinite) A C Q such that

I' U A is LLL-satisfiable and there is no ¢ € & for which A C ¢.

Immediate in view of the definitions of a Minimal Abnormal model and
I' EApm A.



Theorem 10 each of the following obtains:

1.

If T is normal, then MFLL = ?’ = Mf
whence CnALr(F) = CnALm(F) — CnULL(F)-

. If T is abnormal and M%LL % (), then MFLL C Mp?

and hence Cnayr(I') C Cnparm (') C Cnyrn(T).

- M C M C MEC MEEE

whence Cnppr(I') € Cnapr(T) € Cnapm (') C€ CnyLn(T).

. MF C M%LL iff ' U {A} is LLL-satisfiable for some A € Q — U(T').
. CniiL(T) C Cnpgr(T) iff Mrfw C M%LL.
. M MELLFF there is a (possibly infinite) A C Q such that

I' U A is LLL-satisfiable and there is no ¢ € & for which A C ¢.

. If there are Aq,..., A, € Q2 (n>1) such that TU{Aq{,...,Ap} is

LLL-satisfiable and, for every ¢ € &1, {A1,...,An} € o, then
CnypL(I') C Cnapm(T).

Suppose the antecedent is true. Every M € MFY' falsifies some A;
whereas some M € Myl (viz. an M € MzLE ) verifies
A]_ |_| e o o |_| An

FU{A]_,...,ATL}



Theorem 10 each of the following obtains:

1. If T'" is normal, then MFLL = MpP = Mg
whence CnALr(F) = CnALm(F) = CnULL(F)-

2. If T is abnormal and M%LL %+ (0, then MFLL C MP
and hence Cnayr(I') C Cnparm (') C Cnyrn(T).

3. MM C Mt C MT C MELL
whence Cnppr(T') € Cnapr(T) € Cnapm (') € Cnyrn(T).

4. M7 C M%LL iff ' U {A} is LLL-satisfiable for some A € 2 — U(T).
5. CnpL(T) C Cnayr(T) iff Mfw C M%LL.

6. MT C MELL iff there is a (possibly infinite) A C Q such that
I' U A is LLL-satisfiable and there is no ¢ € & for which A C ¢.

7. If there are A1,...,Ap € 2 (n>1) such that T U {Aq,...,Ap} is
LLL-satisfiable and, for every ¢ € &1, {A1,...,An} € o, then
CnypL(I') C Cnapm(T).

8. Cnarm(T') and Cnpgr(T') are non-trivial iff M%LL # 0.

Immediate from Reassurance + no LLL-model trivial.



Theorem 11
If I' Fo1, A, then every AL-proof from I' can be extended in such a way

that A is finally derived in it. (Proof Invariance)

etc.



6 Computability Matters

In view of the reasoning processes explicated by a1,
- a1, IS not decidable

- there is no positive test for Fag,

Does the dynamics of the proofs go anywhere?

Are there criteria for final derivability?



Does the dynamics of the proofs go anywhere?

in view of the block analysis of proofs (and the block semantics):
- a stage of a proof provides a certain insight in the premises
- every step of the proof is informative or non-informative

- if informative: more insight in the premises gained

- if non-informative: no insight lost (sq)

- sensible proofs converge toward maximal insight
(sensible proofs are obtained by the procedure on the next slides)



Are there criteria for final derivability?

- the block semantics
- tableau methods
- procedural criterion



Procedural criterion for Reliability

based on prospective dynamic proofs
(goal-directed + most heuristics pushed into the proof)

3 phase procedure for testing whether I' 1 A
if the procedure stops: answer is obtained (YES / NO)
(procedure at least as good as tableau methods)

pdp2.exe at http://logica.ugent.be/centrum/programs/ implements
procedure for propositional ACLulN"



T Fapr G?

Phase 1
try to derive G on a condition
- no success: I' “aAcLun1 G
- success: G derived on a condition A at line 2
+ A =0: TkFacLun1 G
- A £ 0:
= phase2 = phasel
- line ¢ not marked: T' Fac,uNn1 G

- line @ marked: try to derive G on a (different) condition



T Fapr G?
G derived on condition A (# 0) at line ¢

Phase 2
try to derive Dab(A) on a condition
. no success:! return to phase 1 (line 7 is unmarked)
- success: Dab(A) derived on condition © at line j
- ® = (0: mark line %; return to phase 1
- O £ 0:
= phase3 = phase 2
- line 3 not marked:2 mark line 2. return to phase 1

. line 7 marked:? try to derive Dab(A) on a (different) condition

LANUT) =0
20NU([) =0 whence ANU(T) #0
3 50 T Fry, Dab(®), so possibly ANU(T) =0



T Fapr G?

G derived on condition A (# 0) at line ¢
Dab(A) derived on condition © at line 5!

Phase 3
try to derive Dab(®) on a the condition 0

- NO success: return to phase 2 (line j is unmarked)2

.+ success. mark line 3; return to phase 23

lsoT FL Dab(A U ©)
2 so T' ¥y, Dab(®), whence ANU(T) # 0
3 50 I' b1, Dab(®), so possibly ANU(T) =0



Universal logic

the aim: characterize every reasoning form that displays the internal
dynamics (including all defeasible reasoning) by an adaptive logic in SF

slotwoord
slotwoord slotwoord
slotwoord slotwoord
slotwoord slotwoord

alarm alarm



A Further examples and applications

. Corrective

- Ampliative (4+ ampliative and corrective)
- Incorporation

- Applications



Corrective

e inconsistency-adaptive logics (adapting to negation gluts):
ACLulN' and ACLuN™, those based on other paraconsistent logics,
including CLuNs (LP, ...), ANA, Jaskowski's D2, ...

® negation gaps

e gluts/gaps for all logical symbols
e ambiguity adaptive logics

e adaptive zero logic

e corrective deontic logics

e prioritized ial



Ampliative (4+ ampliative and corrective)

e compatibility (characterization)

e compatibility with inconsistent premises
e diagnosis

e prioritized adaptive logics

e inductive generalization

e abduction

e inference to the best explanation

e analogies, metaphors

e crotetic evocation and erotetic inference

e changing positions in discussions



Incorporation (possibly + extension)

e flat Rescher—Manor consequence relations (+ extensions)
e partial structures and pragmatic truth

® prioritized Rescher—Manor consequence relations

e circumscription, defaults, negation as failure, ...

e dynamic characterization of R_,

e signed systems (Besnard & C°)



Applications

scientific discovery and creativity

scientific explanation

diagnosis

positions defended / agreed upon in discussions
changing positions in discussions

belief revision in inconsistent contexts
inconsistent arithmetic

inductive statistical explanation

tentatively eliminating abnormalities

Gricean maxims



