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1 Introductory Remarks H

adaptive logics interpret a premise set “as normally as possible” with

respect to some standard of normality

they explicate reasoning processes that display an internal (and possibly

an external) dynamics

external dynamics: non-monotonicity

internal dynamics: revise conclusions as insights in premises grow



1 Introductory Remarks H

adaptive logics interpret a premise set “as normally as possible” with

respect to some standard of normality

they explicate reasoning processes that display an internal (and possibly

an external) dynamics

external dynamics: non-monotonicity

internal dynamics: revise conclusions as insights in premises grow

technical reason for dynamics:

absence of positive test for derivability (at predicative level)

· many reasoning patterns explicated by an adaptive logic surv

· number of known inference relations characterized by an adaptive logic

H



many (not all) adaptive logics seem to have a common structure

some can be given this structure under a translation

the structure is central for

proof theory, semantics, soundness and completeness,

proofs of further properties, computational aspects, . . .

whence the plan:

· describe the structure: the SF (standard format)

· define the proof theory and semantics from the SF

· prove as many properties as possible by relying on the SF only

the results are provisional (as everything):

· not all adaptive logics have been phrased in SF

· a more general characterization may be possible

(with sets of properties depending on specifications)
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2 The Standard Format H

· lower limit logic

standard (monotonic, compact, . . . ) logic

· set of abnormalities Ω

characterized by a (possibly restricted) logical form

· strategy

Reliability, Minimal Abnormality, Simple strategy, . . .

upper limit logic:

ULL = LLL + axiom/rule that trivializes abnormalities

semantically: the LLL-models that verify no abnormality

general idea behind adaptive logics:

CnAL(Γ) : CnLLL(Γ) + what follows if as many members of Ω are false

as the premises permit

H



Example: the inconsistency-adaptive ACLuNm H

· lower limit logic: CLuN

niets

· set of abnormalities: Ω = {∃(A ∧ ∼A) | A ∈ F}
niets

· strategy : Minimal Abnormality

niets

upper limit logic:

CL = CLuN + (A ∧ ∼A) ⊃ B

semantically: the CLuN-models that verify no inconsistency

corrective adaptive logic (if CL is the standard)
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Example: logic of inductive generalization: ILm H

· lower limit logic: CL

niets

· set of abnormalities: Ω = {∃A ∧ ∃∼A | A ∈ F◦}
niets

· strategy : Minimal Abnormality

niets

upper limit logic:

UCL = CL + ∃αA(α) ⊃ ∀αA(α)

semantically: the uniform CL-models (v(πr) ∈ {∅, D(r)})

ampliative adaptive logic (if CL is the standard)
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Example: Strong Consequence Relation (Rescher–Manor) H

consider ACLuNm with classical negation (¬) occurring in the language

let W 6∼ be the closed formulas that do not contain ∼

the theorems in W 6∼ are those of CL (with ¬ the standard negation)

let Γ∼¬ = {∼¬A | A ∈ Γ}

where Γ ∪ {A} ⊆ W 6∼: Γ `Strong A iff Γ∼¬ |=ACLuNm A

corrective consequence relation characterized by an adaptive logic

(under a translation)

H



Conventions

• to simplify the metatheoretic proofs, we add (where necessary) all

logical symbols of CL to the LLL

· harmless

· these symbols need not occur in the premises or conclusion

· notation: ¬, A, u, t, (uα), (tα), and ==

so LLL contains CL (in one sense, even if it may be weaker in another)

• Dab-formula: classical disjunction of the members of a finite ∆ ⊂ Ω

notation: Dab(∆)
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3 Proofs H

· rules of inference (determined by LLL and Ω)

· a marking definition (determined by Ω and the stategy)

dynamics of the proofs controlled by attaching conditions (finite subsets

of Ω) to derived formulas

line of annotated proof: number, formula, justification, condition

the rules govern the conditions

marking definition: determines for every line i at every stage s of a proof

whether i is IN or OUT in view of

{
the condition of i
the Dab-formulas derived

H



Rules of inference (depend on LLL and Ω, not on the strategy) H

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1
. . . . . .
An ∆n
B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An `LLL B t Dab(Θ) A1 ∆1
. . . . . .
An ∆n
B ∆1 ∪ . . . ∪ ∆n ∪ Θ

for example:

p, p ⊃ q `CLuN q

∼p, p ∨ q `CLuN q ∨ (p ∧ ∼p)

H



Marking definition

proceeds in terms of the minimal Dab-formulas that are derived at the

stage of the proof

Dab(∆) is a minimal Dab-formula at stage s:

Dab(∆) derived on line with condition ∅
no Dab(∆′) with ∆′ ⊂ ∆ derived on line with condition ∅

H



Marking Definition for Reliability H

where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas derived

on condition ∅ at stage s,

Us(Γ) = ∆1 ∪ . . . ∪ ∆n

Definition

where ∆ is the condition of line i,

line i is marked at stage s iff ∆ ∩ Us(Γ) 6= ∅

H



Marking Definition for Minimal Abnormality H

where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas derived

on condition ∅ at stage s,

Φ◦
s(Γ): set of all sets that contain one member of each ∆i

Φ?
s(Γ): contains, for any ϕ ∈ Φ◦

s(Γ), CnLLL(ϕ) ∩ Ω

Φs(Γ): ϕ ∈ Φ?
s(Γ) that are not proper supersets of a ϕ′ ∈ Φ?

s(Γ)

minimal sets of abnormalities that should be true
in order for all Dab-formulas derived at stage s to be true

Definition

where A is the formula and ∆ is the condition of line i,

line i is marked at stage s iff,

(i) there is no ϕ ∈ Φs(Γ) such that ϕ ∩ ∆ = ∅, or

(ii) for some ϕ ∈ Φs(Γ), there is no line at which A is derived on a

condition Θ for which ϕ ∩ Θ = ∅

H



Marking Definition for the Simple strategy H

Definition

where ∆ is the condition of line i,

line i is marked at stage s iff some A ∈ ∆ is derived on condition ∅

only suitable iff, for all Γ,

Γ `LLL Dab(∆) iff for some A ∈ ∆, Γ `LLL A.

in other words: if Dab(∆) is derived on condition ∅,

then, for some A ∈ ∆, A is derivable on condition ∅

in this case, Reliability and Minimal Abnormality both coincide with the

Simple Strategy

H



Derivability at a stage vs. final derivability H

idea: A derived on an unmarked line i

and the proof is stable with respect to i

stability concerns a specific line

Definition

A is finally derived from Γ at line i of a proof at stage s iff

(i) A is the second element of line i,

(ii) line i is unmarked at stage s, and

(iii) any extension of the proof may be further extended in such a way

that line i is unmarked.

Definition

Γ `AL A (A is finally AL-derivable from Γ) iff A is finally derived at a

line of a proof from Γ.

H



Two remarks: H

even at the predicative level, there are criteria for final derivability

· ULL extends LLL by validating some further rules

· AL extends LLL by validating some applications of those ULL-rules

H



Extremely simple propositional example for ACLuNr (and ACLuNm)

1 (p ∧ q) ∧ t PREM ∅
2 ∼p ∨ r PREM ∅
3 ∼q ∨ s PREM ∅
4 ∼p ∨ ∼q PREM ∅
5 t ⊃ ∼p PREM ∅
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Extremely simple propositional example for ACLuNr (and ACLuNm)

1 (p ∧ q) ∧ t PREM ∅
2 ∼p ∨ r PREM ∅
3 ∼q ∨ s PREM ∅
4 ∼p ∨ ∼q PREM ∅
5 t ⊃ ∼p PREM ∅
6 r 1, 2; RC {p ∧ ∼p}

√

7 s 1, 3; RC {q ∧ ∼q}
8 (p ∧ ∼p) ∨ (q ∧ ∼q) 1, 4; RU ∅
9 p ∧ ∼p 1, 5; RU ∅

nothing interesting happens when the proof is continued

no mark will be removed or added
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4 Semantics H

Dab(∆) is a minimal Dab-consequence of Γ:

Γ �LLL Dab(∆) and, for all ∆′ ⊂ ∆, Γ 2LLL Dab(∆′)

where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences of Γ,

U(Γ) = ∆1 ∪ ∆2 ∪ . . .

where M is a LLL-model: Ab(M) = {A ∈ Ω | M |= A}

the AL-semantics selects some LLL-models of Γ as AL-models of Γ

the selection depends on Ω and on the strategy

H



Reliability H

a LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ)

Γ �ALr A iff all reliable models of Γ verify A

Minimal Abnormality

a LLL-model M of Γ is minimally abnormal

iff

there is no LLL-model M ′ of Γ for which Ab(M ′) ⊂ Ab(M)

Γ �ALm A iff all minimally abnormal models of Γ verify A

Simple strategy: either of the above if the Simple strategy is suitable

H
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5 Some Metatheory H

5.1 Preliminaries

5.2 On the ULL

5.3 Strong Reassurance

5.4 Soundness and Completeness

5.5 Some Further properties
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5.1 Preliminaries H

LLL is reflexive, transitive, monotonic, compact, contains CL (see

before) and has a characteristic semantics

Ω : all formulas of a (possibly restricted) logical form F

provisos:

· if A has the form F, then A `LLL Dab(∆) for some (finite) ∆ ∈ Ω

· every A ∈ Ω is falsified by a LLL-model

the provisos are only required for obtaining a standard ULL

by a standard procedure, not for the rest of the metatheory

strategy: we shall consider only Reliability and Minimal Abnormality

(the Simple strategy reduces to these where it is sensible)
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5.2 On the ULL H

Definition Γ `ULL A iff Γ ∪ Ω¬ `LLL A

viz. ULL: exactly as LLL, except that it trivializes abnormalities

Theorem 1

Where Ω is characterized by the logical form F + a (possibly empty)

restriction, ULL is LLL + the axiom schema ¬F.

Proof.

(1) LLL + ¬F contains ULL: obvious

(2) ULL contains LLL + ¬F:

suppose: B has the form F

there is a finite ∆ ∈ Ω such that B `LLL Dab(∆)

for every C ∈ ∆, `ULL ¬C

so `ULL ¬Dab(∆) and also `ULL ¬B

H



ULL = LLL + ¬F

ULL-semantics: the LLL-models that verify no member of Ω

Theorem 2

LLL + the axiom schema ¬F is sound and complete w.r.t. the

ULL-semantics.

Obvious in view of the proof of Theorem 1.

H



Theorem 3 H
Γ `ULL A iff there is a finite ∆ ⊆ Ω such that Γ `LLL A t Dab(∆).

(Derivability Adjustment Theorem)

Proof.

The following six statements are equivalent:

Γ `ULL A

Γ ∪ Ω¬ `LLL A Def. ULL

Γ′ ∪ ∆¬ `LLL A for a finite Γ′ ⊆ Γ and a finite ∆ ⊆ Ω LLL compact

Γ′ `LLL A t Dab(∆) for those Γ′ and ∆ LLL contains CL

Γ `LLL A t Dab(∆) for a finite ∆ ⊆ Ω LLL monotonic

‘motor’ for the adaptive logic: one tries to get as close to ULL as

possible by considering Dab(∆) as false whenever Γ permits so

H



obvious:

Theorem 4

ULL contains CL

ULL is reflexive, transitive, monotonic, and uniform

ULL is compact

5.2 5



5.3 Strong Reassurance H

Stopperedness, Smoothness

if a model of the premisses is not selected, this is justified by the fact

that a selected model of the premisses is less abnormal

MLLL
Γ : the LLL-models of Γ

Mm
Γ : the ALm-models of Γ

Mr
Γ: the ALr-models of Γ

H



Theorem 5 H
If M ∈ MLLL

Γ − Mm
Γ , then there is a M ′ ∈ Mm

Γ such that

Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. (holds vacuously if Mm
Γ = MLLL

Γ )

Consider M ∈ MLLL
Γ − Mm

Γ ; D1, D2, . . . list of all members of Ω

∆0 = ∅
∆i+1 = ∆i ∪ {¬Di+1}

if Ab(M ′) ⊆ Ab(M) for some M ′ of Γ ∪ ∆i ∪ {¬Di+1}, otherwise

∆i+1 = ∆i

∆ = ∆0 ∪ ∆1 ∪ ∆2 ∪ . . .

Γ ∪ ∆ has LLL-models (compactness of LLL + construction)

⇒

H



Theorem 5 H
If M ∈ MLLL

Γ − Mm
Γ , then there is a M ′ ∈ Mm

Γ such that

Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. (holds vacuously if Mm
Γ = MLLL

Γ )

Consider M ∈ MLLL
Γ − Mm

Γ . Γ ∪ ∆ has LLL-models

Step 1. If M ′ is a model of Γ ∪ ∆, then Ab(M ′) ⊂ Ab(M).

Suppose that there is a Dj ∈ Ω such that Dj ∈ Ab(M ′) − Ab(M). Let

M ′′ be a model of Γ ∪ ∆j−1 for which Ab(M ′′) ⊆ Ab(M). As

Dj /∈ Ab(M), Dj /∈ Ab(M ′′). Hence M ′′ is a model of

Γ ∪ ∆j−1 ∪ {¬Dj} and Ab(M ′′) ⊆ Ab(M). So ¬Dj ∈ ∆j ⊆ ∆. As M ′

is a model of Γ ∪ ∆, Dj /∈ Ab(M ′). But this contradicts the supposition.

⇒

H



Theorem 5 H
If M ∈ MLLL

Γ − Mm
Γ , then there is a M ′ ∈ Mm

Γ such that

Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. (holds vacuously if Mm
Γ = MLLL

Γ )

Consider M ∈ MLLL
Γ − Mm

Γ . Γ ∪ ∆ has LLL-models

Step 1. If M ′ is a model of Γ ∪ ∆, then Ab(M ′) ⊂ Ab(M).

Step 2. Every model of Γ ∪ ∆ is a minimal abnormal model of Γ.

Suppose that M ′ is a model of Γ ∪ ∆, but is not a minimal abnormal

model of Γ. Hence [. . . ] there is a model M ′′ of Γ for which

Ab(M ′′) ⊂ Ab(M ′).

It follows that M ′′ is a model of Γ ∪ ∆. If it were not, then, as M ′′ is a

model of Γ, there is a ¬Dj ∈ ∆ such that M ′ verifies ¬Dj and M ′′

falsifies ¬Dj. But then M ′ falsifies Dj and M ′′ verifies Dj, which is

impossible in view of Ab(M ′′) ⊂ Ab(M ′).

Consider any Dj ∈ Ab(M ′) − Ab(M ′′) 6= ∅. As M ′′ is a model of

Γ ∪ ∆j−1 that falsifies Dj, it is a model of Γ ∪ ∆j−1 ∪ {¬Dj}. As

Ab(M ′′) ⊂ Ab(M ′) and Ab(M ′) ⊆ Ab(M), Ab(M ′′) ⊂ Ab(M). It

follows that ∆j = ∆j−1 ∪ {¬Dj} and hence that ¬Dj ∈ ∆. But then

Dj /∈ Ab(M ′). Hence, Ab(M ′′) = Ab(M ′). So the supposition leads to

a contradiction. H



Theorem 5 H
If M ∈ MLLL

Γ − Mm
Γ , then there is a M ′ ∈ Mm

Γ such that

Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Minimal Abnormality.)

Proof. (holds vacuously if Mm
Γ = MLLL

Γ )

Consider M ∈ MLLL
Γ − Mm

Γ . Γ ∪ ∆ has LLL-models

Step 1. If M ′ is a model of Γ ∪ ∆, then Ab(M ′) ⊂ Ab(M).

Step 2. Every model of Γ ∪ ∆ is a minimal abnormal model of Γ.

H



Lemma H
Mm

Γ ⊆ Mr
Γ (all Minimal Abnormal models are Reliable models)

Theorem 6

If M ∈ MLLL
Γ − Mr

Γ, then there is a M ′ ∈ Mr
Γ such that

Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Reliability.)

5.3 5



Theorem 7

Γ `ALr A iff Γ `LLL A t Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite ∆ ⊂ Ω.

Proof.

Both directions obvious in view of previous Lemma and the definition of

Γ `ALr A.

H



Theorem 7

Γ `ALr A iff Γ `LLL A t Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite ∆ ⊂ Ω.

Theorem 8

Γ �ALr A iff Γ �LLL A t Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite ∆ ⊂ Ω.

Proof.

⇒
all models in Mr

Γ verify A

so Γ ∪ (Ω − U(Γ))¬ �LLL A

so Γ′ ∪ ∆¬ �LLL A for finite Γ′ ⊂ Γ and ∆ ⊂ Ω compact

so Γ′ �LLL A t Dab(∆) CL

so Γ �LLL A t Dab(∆) monotonic

⇐
suppose there are LLL-models of Γ and they all verify A t Dab(∆)

so there are ALr-models of Γ Strong Reassurance

all ALr-models of Γ falsify Dab(∆) ∆ ∩ U(Γ) = ∅
so all ALr-models of Γ verify A

H



Theorem 7

Γ `ALr A iff Γ `LLL A t Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite ∆ ⊂ Ω.

Theorem 8

Γ �ALr A iff Γ �LLL A t Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite ∆ ⊂ Ω.

Lemma

Γ `LLL A t Dab(∆) iff Γ �LLL A t Dab(∆).

Proof. By the soundness and completeness of LLL.

H



Theorem 7

Γ `ALr A iff Γ `LLL A t Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite ∆ ⊂ Ω.

Theorem 8

Γ �ALr A iff Γ �LLL A t Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite ∆ ⊂ Ω.

Lemma

Γ `LLL A t Dab(∆) iff Γ �LLL A t Dab(∆).

Corollary

Γ `ALr A iff Γ �ALr A.
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5.5 Some Further properties H

terminology

minimal Dab-consequence of Γ

Φ◦(Γ): set of all sets that contain one member of each minimal

Dab-consequence of Γ
Φ?(Γ): contains, for every ϕ ∈ Φ◦(Γ), CnLLL(ϕ) ∩ Ω
Φ(Γ): ϕ ∈ Φ?(Γ) that are not proper supersets of a ϕ′ ∈ Φ?(Γ)

Lemma

M ∈ Mm
Γ iff M ∈ MLLL

Γ and Ab(M) ∈ ΦΓ.

Proof: long but perspicuous.

H



immediate or almost immediate consequences of the Lemma:

Theorem 9 each of the following obtains:

1. Mm
Γ ⊆ Mr

Γ. Hence CnALr(Γ) ⊆ CnALm(Γ).

2. If A ∈ Ω − U(Γ), then ¬A ∈ CnALr(Γ).

3. If Dab(∆) is a minimal Dab-consequence of Γ and A ∈ ∆, then

some M ∈ Mm
Γ verifies A and falsifies all members (if any) of

∆ − {A}.
4. Mm

Γ = Mm
CnALm (Γ)

whence CnALm(Γ) = CnALm(CnALm(Γ)).

(Fixed Point.)

5. Mr
Γ = Mr

CnALr (Γ)
whence CnALr(Γ) = CnALr(CnALr(Γ)). (Fixed

Point.)

6. For all ∆ ⊆ Ω, Dab(∆) ∈ CnAL(Γ) iff Dab(∆) ∈ CnLLL(Γ).

(Immunity.)

7. If Γ �AL A for every A ∈ Γ′, and Γ ∪ Γ′ �AL B, then Γ �AL B.

(Cautious Cut.)

8. If Γ �AL A for every A ∈ Γ′, and Γ �AL B, then Γ ∪ Γ′ �AL B.

(Cautious Monotonicity.)

H



Theorem 10 each of the following obtains: H

1. If Γ is normal, then MULL
Γ = Mm

Γ = Mr
Γ

whence CnALr(Γ) = CnALm(Γ) = CnULL(Γ).

If Γ is normal, then U(Γ) = ∅ and only ULL-models of Γ are minimally

abnormal.



Theorem 10 each of the following obtains: H

1. If Γ is normal, then MULL
Γ = Mm

Γ = Mr
Γ

whence CnALr(Γ) = CnALm(Γ) = CnULL(Γ).

2. If Γ is abnormal and MLLL
Γ 6= ∅, then MULL

Γ ⊂ Mm
Γ

and hence CnALr(Γ) ⊆ CnALm(Γ) ⊂ CnULL(Γ).

If Γ is abnormal, then MULL
Γ = ∅.



Theorem 10 each of the following obtains: H

1. If Γ is normal, then MULL
Γ = Mm

Γ = Mr
Γ

whence CnALr(Γ) = CnALm(Γ) = CnULL(Γ).

2. If Γ is abnormal and MLLL
Γ 6= ∅, then MULL

Γ ⊂ Mm
Γ

and hence CnALr(Γ) ⊆ CnALm(Γ) ⊂ CnULL(Γ).

3. MULL
Γ ⊆ Mm

Γ ⊆ Mr
Γ ⊆ MLLL

Γ
whence CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ).

MULL
Γ ⊆ Mm

Γ : from 1 and 2. Mr
Γ ⊆ MLLL

Γ is immediate in view of the

definition of a reliable model of Γ. Mm
Γ ⊆ Mr

Γ is item 1 of the previous

Theorem.



Theorem 10 each of the following obtains: H

1. If Γ is normal, then MULL
Γ = Mm

Γ = Mr
Γ

whence CnALr(Γ) = CnALm(Γ) = CnULL(Γ).

2. If Γ is abnormal and MLLL
Γ 6= ∅, then MULL

Γ ⊂ Mm
Γ

and hence CnALr(Γ) ⊆ CnALm(Γ) ⊂ CnULL(Γ).

3. MULL
Γ ⊆ Mm

Γ ⊆ Mr
Γ ⊆ MLLL

Γ
whence CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ).

4. Mr
Γ ⊂ MLLL

Γ iff Γ ∪ {A} is LLL-satisfiable for some A ∈ Ω − U(Γ).

Immediate in view of the definitions of a reliable model and Γ �ALr A.



Theorem 10 each of the following obtains: H

1. If Γ is normal, then MULL
Γ = Mm

Γ = Mr
Γ

whence CnALr(Γ) = CnALm(Γ) = CnULL(Γ).

2. If Γ is abnormal and MLLL
Γ 6= ∅, then MULL

Γ ⊂ Mm
Γ

and hence CnALr(Γ) ⊆ CnALm(Γ) ⊂ CnULL(Γ).

3. MULL
Γ ⊆ Mm

Γ ⊆ Mr
Γ ⊆ MLLL

Γ
whence CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ).

4. Mr
Γ ⊂ MLLL

Γ iff Γ ∪ {A} is LLL-satisfiable for some A ∈ Ω − U(Γ).

5. CnLLL(Γ) ⊂ CnALr(Γ) iff Mr
Γ ⊂ MLLL

Γ .

⇒ Suppose A ∈ CnLLL(Γ) − CnALr(Γ). So, for some A ∈ Ω − U(Γ), all

M ∈ Mr
Γ falsify A whereas some M ∈ MLLL

Γ − Mr
Γ verifies A.

⇐ obvious.
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Γ = Mr
Γ
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Γ
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whence CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ).

4. Mr
Γ ⊂ MLLL

Γ iff Γ ∪ {A} is LLL-satisfiable for some A ∈ Ω − U(Γ).

5. CnLLL(Γ) ⊂ CnALr(Γ) iff Mr
Γ ⊂ MLLL

Γ .

6. Mm
Γ ⊂ MLLL

Γ iff there is a (possibly infinite) ∆ ⊆ Ω such that

Γ ∪ ∆ is LLL-satisfiable and there is no ϕ ∈ ΦΓ for which ∆ ⊆ ϕ.

Immediate in view of the definitions of a Minimal Abnormal model and

Γ �ALm A.
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Γ = Mr
Γ
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2. If Γ is abnormal and MLLL
Γ 6= ∅, then MULL

Γ ⊂ Mm
Γ

and hence CnALr(Γ) ⊆ CnALm(Γ) ⊂ CnULL(Γ).

3. MULL
Γ ⊆ Mm

Γ ⊆ Mr
Γ ⊆ MLLL

Γ
whence CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ).

4. Mr
Γ ⊂ MLLL

Γ iff Γ ∪ {A} is LLL-satisfiable for some A ∈ Ω − U(Γ).

5. CnLLL(Γ) ⊂ CnALr(Γ) iff Mr
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Γ .

6. Mm
Γ ⊂ MLLL

Γ iff there is a (possibly infinite) ∆ ⊆ Ω such that

Γ ∪ ∆ is LLL-satisfiable and there is no ϕ ∈ ΦΓ for which ∆ ⊆ ϕ.

7. If there are A1, . . . , An ∈ Ω (n ≥ 1) such that Γ ∪ {A1, . . . , An} is

LLL-satisfiable and, for every ϕ ∈ ΦΓ, {A1, . . . , An} * ϕ, then

CnLLL(Γ) ⊂ CnALm(Γ).

Suppose the antecedent is true. Every M ∈ Mm
Γ falsifies some Ai

whereas some M ∈ MLLL
Γ (viz. an M ∈ MLLL

Γ∪{A1,...,An}) verifies

A1 u . . . u An.



Theorem 10 each of the following obtains: H

1. If Γ is normal, then MULL
Γ = Mm

Γ = Mr
Γ

whence CnALr(Γ) = CnALm(Γ) = CnULL(Γ).
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4. Mr
Γ ⊂ MLLL

Γ iff Γ ∪ {A} is LLL-satisfiable for some A ∈ Ω − U(Γ).

5. CnLLL(Γ) ⊂ CnALr(Γ) iff Mr
Γ ⊂ MLLL

Γ .

6. Mm
Γ ⊂ MLLL

Γ iff there is a (possibly infinite) ∆ ⊆ Ω such that

Γ ∪ ∆ is LLL-satisfiable and there is no ϕ ∈ ΦΓ for which ∆ ⊆ ϕ.

7. If there are A1, . . . , An ∈ Ω (n ≥ 1) such that Γ ∪ {A1, . . . , An} is

LLL-satisfiable and, for every ϕ ∈ ΦΓ, {A1, . . . , An} * ϕ, then

CnLLL(Γ) ⊂ CnALm(Γ).

8. CnALm(Γ) and CnALr(Γ) are non-trivial iff MLLL
Γ 6= ∅.

Immediate from Reassurance + no LLL-model trivial.

H



Theorem 11

If Γ `AL A, then every AL-proof from Γ can be extended in such a way

that A is finally derived in it. (Proof Invariance)

etc.
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6 Computability Matters H

In view of the reasoning processes explicated by `AL,

· `AL is not decidable

· there is no positive test for `AL

Does the dynamics of the proofs go anywhere?

Are there criteria for final derivability?

H



Does the dynamics of the proofs go anywhere?

in view of the block analysis of proofs (and the block semantics):

· a stage of a proof provides a certain insight in the premises

· every step of the proof is informative or non-informative

· if informative: more insight in the premises gained

· if non-informative: no insight lost (sq)

· sensible proofs converge toward maximal insight

(sensible proofs are obtained by the procedure on the next slides)

H



Are there criteria for final derivability?

· the block semantics

· tableau methods

· procedural criterion

H



Procedural criterion for Reliability

based on prospective dynamic proofs

(goal-directed + most heuristics pushed into the proof)

3 phase procedure for testing whether Γ `ALr A

if the procedure stops: answer is obtained (YES / NO)

(procedure at least as good as tableau methods)

pdp2.exe at http://logica.ugent.be/centrum/programs/ implements

procedure for propositional ACLuNr

H



Γ `ALr G? H

Phase 1

try to derive G on a condition

· no success: Γ 0ACLuN1 G

· success: G derived on a condition ∆ at line i

· ∆ = ∅: Γ `ACLuN1 G

· ∆ 6= ∅:

⇒ phase 2 ⇒ phase 1

· line i not marked: Γ `ACLuN1 G

· line i marked: try to derive G on a (different) condition

H



Γ `ALr G? H

G derived on condition ∆ ( 6= ∅) at line i

Phase 2

try to derive Dab(∆) on a condition

· no success:1 return to phase 1 (line i is unmarked)

· success: Dab(∆) derived on condition Θ at line j

· Θ = ∅: mark line i; return to phase 1

· Θ 6= ∅:
⇒ phase 3 ⇒ phase 2

· line j not marked:2 mark line i; return to phase 1

· line j marked:3 try to derive Dab(∆) on a (different) condition

1 ∆ ∩ U(Γ) = ∅
2 Θ ∩ U(Γ) = ∅ whence ∆ ∩ U(Γ) 6= ∅
3 so Γ `LLL Dab(Θ), so possibly ∆ ∩ U(Γ) = ∅

H



Γ `ALr G? H

G derived on condition ∆ ( 6= ∅) at line i

Dab(∆) derived on condition Θ at line j1

Phase 3

try to derive Dab(Θ) on a the condition ∅

· no success: return to phase 2 (line j is unmarked)2

· success: mark line j; return to phase 23

1 so Γ `LLL Dab(∆ ∪ Θ)
2 so Γ 0LLL Dab(Θ), whence ∆ ∩ U(Γ) 6= ∅
3 so Γ `LLL Dab(Θ), so possibly ∆ ∩ U(Γ) = ∅

H



Universal logic

the aim: characterize every reasoning form that displays the internal

dynamics (including all defeasible reasoning) by an adaptive logic in SF

slotwoord slotwoord

slotwoord slotwoord

slotwoord slotwoord

slotwoord slotwoord

alarm alarm
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A Further examples and applications

· Corrective

· Ampliative (+ ampliative and corrective)

· Incorporation

· Applications
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Corrective H

• inconsistency-adaptive logics (adapting to negation gluts):

ACLuNr and ACLuNm, those based on other paraconsistent logics,

including CLuNs (LP, . . . ), ANA, Jaśkowski’s D2, . . .

• negation gaps

• gluts/gaps for all logical symbols

• ambiguity adaptive logics

• adaptive zero logic

• corrective deontic logics

• prioritized ial

• . . .

H



Ampliative (+ ampliative and corrective) H

• compatibility (characterization)

• compatibility with inconsistent premises

• diagnosis

• prioritized adaptive logics

• inductive generalization

• abduction

• inference to the best explanation

• analogies, metaphors

• erotetic evocation and erotetic inference

• changing positions in discussions

• . . .

H



Incorporation (possibly + extension) H

• flat Rescher–Manor consequence relations (+ extensions)

• partial structures and pragmatic truth

• prioritized Rescher–Manor consequence relations

• circumscription, defaults, negation as failure, . . .

• dynamic characterization of R→

• signed systems (Besnard & C◦)

• . . .

H



Applications H

• scientific discovery and creativity

• scientific explanation

• diagnosis

• positions defended / agreed upon in discussions

• changing positions in discussions

• belief revision in inconsistent contexts

• inconsistent arithmetic

• inductive statistical explanation

• tentatively eliminating abnormalities

• Gricean maxims

• . . .
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