Adaptive Logics
 Handling Dynamic Reasoning

Diderik Batens Joke Meheus
Centre for Logic and Philosophy of Science Ghent University, Belgium
\{diderik.batens,joke.meheus\}@ugent.be http://logica.ugent.be/dirk/ http://logica.ugent.be/joke/
http://logica.ugent.be/centrum/writings/ http://logica.ugent.be/adlog/

CONTENTS

One

1 Dynamic Reasoning Patterns
2 Inconsistency-Adaptive Logics

Two

3 The Standard Format
Three
4 Combining Adaptive Logics
5 Decidability and Decisions
6 Further examples and applications

1 Dynamic reasoning patterns

1.1 The problem
1.2 Example 1: Process of explanation
1.3 Example 2: (Classical) Compatibility
1.4 Example 3: Inductive generalization
1.5 Example 4: Erotetic inferences
1.6 Some further examples
1.7 Adaptive Iogics and dynamic proof theories
1.1 The Problem
many reasoning processes in the sciences (and elsewhere) display an external dynamics
an internal dynamics
many reasoning processes in the sciences (and elsewhere) display an external dynamics
non-monotonic
an internal dynamics
revise conclusions as insights in premises grow
many reasoning processes in the sciences (and elsewhere) display an external dynamics
non-monotonic
an internal dynamics
revise conclusions as insights in premises grow
\Uparrow absence of positive test (at predicative level)
many reasoning processes in the sciences (and elsewhere) display an external dynamics
non-monotonic
an internal dynamics
revise conclusions as insights in premises grow
\Uparrow absence of positive test (at predicative level)

Problem: gain technically sound control on the reasoning processes

1.2 Example 1: Process of explanation

given: $\left\{\begin{array}{l}\text { explanandum } \boldsymbol{E} \\ \text { theory } \boldsymbol{T}\end{array}\right.$
find: initial condition I

1.2 Example 1: Process of explanation

given: $\left\{\begin{array}{l}\text { explanandum } \boldsymbol{E} \\ \text { theory } \boldsymbol{T}\end{array}\right.$
find: initial condition I

Two different steps

- find potential initial conditions
- establish one of them (other theories)
\boldsymbol{T} and \boldsymbol{I} form an explanation of \boldsymbol{E} iff $\boldsymbol{T}, \boldsymbol{I} \vdash \boldsymbol{E}$ and
(i) \boldsymbol{T} and \boldsymbol{E} : no common ind. cons.
(ii) \boldsymbol{I} and \boldsymbol{E} : no common predicates
(iii) $\nvdash_{\mathrm{CL}} \sim I$
(iv) $T \nvdash_{\mathrm{CL}} E$
(v) $\boldsymbol{I} \nvdash_{\mathrm{CL}} \boldsymbol{E}$
(vi) $T \nvdash_{\mathrm{CL}} \sim I$
I not inconsistent
\boldsymbol{E} not implied by \boldsymbol{T} alone *
\boldsymbol{E} not implied by \boldsymbol{I} alone
T not falsified by I
\boldsymbol{T} and \boldsymbol{I} form an explanation of \boldsymbol{E} iff $T, I \vdash E$ and
(i) \boldsymbol{T} and \boldsymbol{E} : no common ind. cons.
(ii) \boldsymbol{I} and \boldsymbol{E} : no common predicates
(iii) $\nvdash_{\mathrm{CL}} \sim I$
(iv) $T \nvdash_{\mathrm{CL}} \boldsymbol{E}$
(v) $\boldsymbol{I} \nvdash_{\mathrm{CL}} \boldsymbol{E}$
(vi) $T \nvdash_{\mathrm{CL}} \sim I$$I$ not inconsistent
\boldsymbol{E} not implied by \boldsymbol{T} alone *\boldsymbol{E} not implied by \boldsymbol{I} alone\boldsymbol{T} not falsified by \boldsymbol{I}*

Comments

no positive test for (iv) and (vi) irrelevant predicates: $I[a] \wedge I^{\prime}[a]$

1.3 Example 2: (Classical) Compatibility

given: a (consistent) set Γ
find: those \boldsymbol{A} that (taken separately) do not make $\boldsymbol{\Gamma}$ inconsistent

1.3 Example 2: (Classical) Compatibility

given: a (consistent) set Γ
find: those \boldsymbol{A} that (taken separately) do not make $\boldsymbol{\Gamma}$ inconsistent
plays a central role in:
partial structures approach of da Costa and associates
belief revision
ampliative reasoning
extending a theory

1.3 Example 2: (Classical) Compatibility

given: a (consistent) set Γ
find: those \boldsymbol{A} that (taken separately) do not make $\boldsymbol{\Gamma}$ inconsistent
plays a central role in:
partial structures approach of da Costa and associates belief revision ampliative reasoning extending a theory
\boldsymbol{A} is compatible with Γ iff $\Gamma \nvdash_{\mathrm{CL}} \sim \boldsymbol{A}$ (no positive test)

1.3 Example 2: (Classical) Compatibility

given: a (consistent) set Γ
find: those \boldsymbol{A} that (taken separately) do not make $\boldsymbol{\Gamma}$ inconsistent
plays a central role in:
partial structures approach of da Costa and associates belief revision ampliative reasoning extending a theory
\boldsymbol{A} is compatible with Γ iff $\Gamma \nvdash \mathrm{CL}^{\sim A}$ (no positive test)
note: paraconsistent compatibility (?!)

1.4 Inductive generalization
given: $\left\{\begin{array}{l}\text { a set of data } \Gamma \text { and } \\ \text { zero or more background theories }\end{array}\right.$
find: the suitable generalizations (generalization: $\forall \boldsymbol{A}$ with \boldsymbol{A} purely functional)
1.4 Inductive generalization
given: $\left\{\begin{array}{l}\text { a set of data } \Gamma \text { and } \\ \text { zero or more background theories }\end{array}\right.$
find: the suitable generalizations (generalization: $\forall \boldsymbol{A}$ with \boldsymbol{A} purely functional)
natural restriction:
the generalizations should be jointly compatible with Γ
given: $\left\{\begin{array}{l}\text { a set of data } \Gamma \text { and } \\ \text { zero or more background theories }\end{array}\right.$
find: the suitable generalizations (generalization: $\forall \boldsymbol{A}$ with \boldsymbol{A} purely functional)
natural restriction:
the generalizations should be jointly compatible with Γ
\Downarrow
only those generalizations $\forall \boldsymbol{A}_{\boldsymbol{i}}$ derivable for which
no 'minimal' disjunction $\sim \forall A_{1} \vee \ldots \vee \sim \forall A_{i} \vee \ldots \vee \sim \forall A_{n}(n \geq 1)$
is CL-derivable from Γ

1.5 Erotetic inferences

given: $\left\{\begin{array}{l}\text { a set of declarative sentences } \Gamma \text { and/or } \\ \text { an initial question } Q\end{array}\right.$
find: the questions that 'arise' from Γ and/or Q

1.5 Erotetic inferences

given: $\left\{\begin{array}{l}\text { a set of declarative sentences } \Gamma \text { and/or } \\ \text { an initial question } Q\end{array}\right.$
find: the questions that 'arise' from Γ and/or Q
question evocation (Andrzej Wiśniewski):
a question Q is evoked by a set of declarative sentences Γ iff
(i) $\Gamma \vdash \bigvee(d Q)$
(Q is sound with respect to Γ)
(ii) $\Gamma \nvdash A$, for any $A \in d Q$
(Q is informative with respect to Γ)

1.5 Erotetic inferences

given: $\left\{\begin{array}{l}\text { a set of declarative sentences } \Gamma \text { and/or } \\ \text { an initial question } Q\end{array}\right.$
find: the questions that 'arise' from Γ and/or Q
question evocation (Andrzej Wiśniewski):
a question Q is evoked by a set of declarative sentences Γ iff
(i) $\Gamma \vdash \bigvee(d Q)$
(Q is sound with respect to Γ)
(ii) $\Gamma \nvdash A$, for any $A \in d Q$
(Q is informative with respect to Γ)
erotetic impliation (Andrzej Wiśniewski)

1.6 Some further examples

- interpret an inconsistent theory as consistently as possible

1.6 Some further examples

- interpret an inconsistent theory as consistently as possible
- inductive prediction

1.6 Some further examples

- interpret an inconsistent theory as consistently as possible
- inductive prediction
- interpreting a person's position during an ongoing discussion

1.6 Some further examples

- interpret an inconsistent theory as consistently as possible
- inductive prediction
- interpreting a person's position during an ongoing discussion
- all reasoning that involves defaults (or more or less preferred premises)
- diagnostic reasoning
- handling preferred sets of premises
1.7 Adaptive logics and dynamic proof theories
no positive test for $\boldsymbol{\Gamma} \vdash \boldsymbol{A}$

1.7 Adaptive logics and dynamic proof theories

 no positive test for $\Gamma \vdash A$
adaptive logic
internal dynamics

1.7 Adaptive logics and dynamic proof theories

$$
\text { no positive test for } \Gamma \vdash \boldsymbol{A}
$$

adaptive logic
internal dynamics
\uparrow explicates
dynamic proof theory
of the adaptive logic
1.7 Adaptive logics and dynamic proof theories
no positive test for $\Gamma \vdash A$
$\vdash \swarrow$ reasoning
adaptive logic

internal dynamics

\uparrow explicates
dynamic proof theory
of the adaptive logic

What is an adaptive logic?
What is a dynamic proof theory?
1.7

2 Inconsistency-Adaptive Logics

2.1 An Application Type
2.2 Going Paraconsistent
2.3 Going Adaptive: Dynamic Proofs
2.4 Going Adaptive: Semantics
2.5 Strategies

2.1 An Application Type

the original problem:
T, intended as consistent, turns out to be inconsistent.

2.1 An Application Type

the original problem:
\boldsymbol{T}, intended as consistent, turns out to be inconsistent.
reason from \boldsymbol{T} in order to find consistent replacement.

2.1 An Application Type

the original problem:
\boldsymbol{T}, intended as consistent, turns out to be inconsistent.
reason from \boldsymbol{T} in order to find consistent replacement.
interpret \boldsymbol{T} 'as consistently as possible'
$=$ adapt to the specific inconsistencies of T

2.1 An Application Type

the original problem:
\boldsymbol{T}, intended as consistent, turns out to be inconsistent.
reason from \boldsymbol{T} in order to find consistent replacement.
interpret \boldsymbol{T} 'as consistently as possible'
$=$ adapt to the specific inconsistencies of T
examples: Frege's set theory, thermodynamics around 1840, ...

2.1 An Application Type

the original problem:
\boldsymbol{T}, intended as consistent, turns out to be inconsistent.
reason from \boldsymbol{T} in order to find consistent replacement.
interpret \boldsymbol{T} 'as consistently as possible’
$=$ adapt to the specific inconsistencies of T
examples: Frege's set theory, thermodynamics around 1840, ...
cannot be interpreted in terms of CL: triviality

2.1 An Application Type

the original problem:
T, intended as consistent, turns out to be inconsistent.
reason from \boldsymbol{T} in order to find consistent replacement.
interpret T 'as consistently as possible'
$=$ adapt to the specific inconsistencies of T
examples: Frege's set theory, thermodynamics around 1840, ...
cannot be interpreted in terms of CL: triviality
interpret in terms of paraconsistent logic?
2.2 Going Paraconsistent
the basic paraconsistent logic CLuN

2.2 Going Paraconsistent

the basic paraconsistent logic CLuN

1 retain full positive logic
if $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{CL}} \boldsymbol{B}$ and no negation occurs in $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ or \boldsymbol{B} then $A_{1}, \ldots, A_{n} \vdash_{\mathrm{CLuN}} B$

2.2 Going Paraconsistent

the basic paraconsistent logic CLuN

1 retain full positive logic if $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{CL}} \boldsymbol{B}$ and no negation occurs in $\boldsymbol{A}_{\boldsymbol{1}}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ or \boldsymbol{B} then $A_{1}, \ldots, A_{n} \vdash_{\mathrm{CLuN}} B$

2 retain Excluded Middle: $\boldsymbol{A} \vee \sim \boldsymbol{A} \quad(\operatorname{or}(A \supset \sim A) \supset \sim A)$

2.2 Going Paraconsistent

the basic paraconsistent logic CLuN

1 retain full positive logic if $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{CL}} \boldsymbol{B}$ and no negation occurs in $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ or \boldsymbol{B} then $A_{1}, \ldots, A_{n} \vdash_{\mathrm{CLuN}} B$

2 retain Excluded Middle: $\boldsymbol{A} \vee \sim \boldsymbol{A} \quad(\operatorname{or}(A \supset \sim A) \supset \sim A)$
notes:
Replacement of Equivalents not generally valid (not valid in scope of \sim)

2.2 Going Paraconsistent

the basic paraconsistent logic CLuN

1 retain full positive logic if $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{CL}} \boldsymbol{B}$ and no negation occurs in $\boldsymbol{A}_{\boldsymbol{1}}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ or \boldsymbol{B} then $A_{1}, \ldots, A_{n} \vdash_{\mathrm{CLuN}} B$

2 retain Excluded Middle: $\boldsymbol{A} \vee \sim \boldsymbol{A} \quad(\operatorname{or}(A \supset \sim A) \supset \sim A)$
notes:
Replacement of Equivalents not generally valid (not valid in scope of \sim) Replacement of Identicals not generally valid (not valid in scope of \sim)

2.2 Going Paraconsistent

the basic paraconsistent logic CLuN

1 retain full positive logic if $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{CL}} \boldsymbol{B}$ and no negation occurs in $\boldsymbol{A}_{\boldsymbol{1}}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ or \boldsymbol{B} then $A_{1}, \ldots, A_{n} \vdash_{\mathrm{CLuN}} B$

2 retain Excluded Middle: $\boldsymbol{A} \vee \sim A \quad(\operatorname{or}(A \supset \sim A) \supset \sim A)$
notes:
Replacement of Equivalents not generally valid (not valid in scope of \sim) Replacement of Identicals not generally valid (not valid in scope of \sim)

What is lost?

DS: $\quad \boldsymbol{A} \vee B$

$$
\frac{\sim A}{B}
$$

classical semantic reasoning for DS:

DS: $\quad \boldsymbol{A} \vee B$

$$
\frac{\sim A}{B}
$$

classical semantic reasoning for DS:
$A \vee B$ is true, so A is true or B is true

DS: $\quad \boldsymbol{A} \vee B$

$$
\frac{\sim A}{B}
$$

classical semantic reasoning for DS:
$\boldsymbol{A} \vee B$ is true, so A is true or B is true
$\sim A$ is true, so A is false

DS: $\quad \boldsymbol{A} \vee B$

$$
\frac{\sim A}{B}
$$

classical semantic reasoning for DS:
$\boldsymbol{A} \vee B$ is true, so A is true or B is true
$\sim A$ is true, so A is false
B is true

DS: $\quad \boldsymbol{A} \vee B$

classical semantic reasoning for DS:
$\boldsymbol{A} \vee B$ is true, so A is true or B is true
$\sim A$ is true, so A is false
B is true
paraconsistent semantic reasoning for DS:

DS: $\quad \boldsymbol{A} \vee B$

classical semantic reasoning for DS:
$\boldsymbol{A} \vee B$ is true, so A is true or B is true
$\sim A$ is true, so A is false
B is true
paraconsistent semantic reasoning for DS:
$\boldsymbol{A} \vee \boldsymbol{B}$ is true, so A is true or B is true

DS: $\quad \boldsymbol{A} \vee B$ $\frac{\sim A}{B}$
classical semantic reasoning for DS:
$\boldsymbol{A} \vee \boldsymbol{B}$ is true, so A is true or B is true
$\sim A$ is true, so A is false
B is true
paraconsistent semantic reasoning for DS:
$\boldsymbol{A} \vee B$ is true, so A is true or B is true
$\sim \boldsymbol{A}$ is true (but A may be true together with $\sim \boldsymbol{A}$)

DS: $\quad \boldsymbol{A} \vee B$ $\frac{\sim A}{B}$
classical semantic reasoning for DS:
$\boldsymbol{A} \vee B$ is true, so A is true or B is true
$\sim A$ is true, so A is false
B is true
paraconsistent semantic reasoning for DS:
$\boldsymbol{A} \vee B$ is true, so A is true or B is true
$\sim \boldsymbol{A}$ is true (but A may be true together with $\sim \boldsymbol{A}$)
B may be true as well as false

DS: $\quad \boldsymbol{A} \vee B$

$$
\frac{\sim A}{B}
$$

classical semantic reasoning for DS:
$A \vee B$ is true, so A is true or B is true
$\sim A$ is true, so A is false
B is true
paraconsistent semantic reasoning for DS:
$\boldsymbol{A} \vee B$ is true, so A is true or B is true
$\sim \boldsymbol{A}$ is true (but A may be true together with $\sim \boldsymbol{A}$)
B may be true as well as false

classical

$\sim \boldsymbol{A}$	$\boldsymbol{A} \vee \boldsymbol{B}$	\boldsymbol{A}	\boldsymbol{B}	
1	1	0	1	
1	1	1	1	impossible
1	1	1	0	impossible

DS: $\quad \boldsymbol{A} \vee B$

$$
\frac{\sim A}{B}
$$

classical semantic reasoning for DS:
$A \vee B$ is true, so A is true or B is true
$\sim A$ is true, so A is false
B is true
paraconsistent semantic reasoning for DS:
$\boldsymbol{A} \vee B$ is true, so A is true or B is true
$\sim \boldsymbol{A}$ is true (but A may be true together with $\sim \boldsymbol{A}$)
B may be true as well as false
paraconsistent

$\sim \boldsymbol{A}$	$\boldsymbol{A} \vee \boldsymbol{B}$	\boldsymbol{A}	\boldsymbol{B}	
1	1	0	1	
1	1	1	1	possible
1	1	1	0	possible

note:

DS and many other rules (MT, RAA, ...) are invalid in $\mathbf{C L u N}$ adding them to CLuN results in CL
note:

DS and many other rules (MT, RAA, ...) are invalid in CLuN adding them to CLuN results in CL
other rules
are invalid in CLuN
adding them to CLuN results in a (richer) paraconsistent logic
note:

DS and many other rules (MT, RAA, ...) are invalid in CLuN adding them to CLuN results in CL
other rules
are invalid in CLuN
adding them to CLuN results in a (richer) paraconsistent logic examples: $\sim \sim \boldsymbol{A} / \boldsymbol{A}$, de Morgan, ...
interpreting a premise set paraconsistently delivers
a sensible ($=$ non-trivial) interpretation
interpreting a premise set paraconsistently delivers
a sensible (= non-trivial) interpretation
not an interpretation that is as consistent as possible
interpreting a premise set paraconsistently delivers
a sensible (= non-trivial) interpretation
not an interpretation that is as consistent as possible
simplistic example: $\Gamma=\{\boldsymbol{p}, \boldsymbol{q}, \sim \boldsymbol{p} \vee \boldsymbol{r}, \sim \boldsymbol{q} \vee s, \sim \boldsymbol{q}\}$
$\Gamma \nvdash_{\mathrm{CLuN}} s \quad$ and $\quad \Gamma \nvdash_{\mathrm{CLuN}} r$
interpreting a premise set paraconsistently delivers
a sensible (= non-trivial) interpretation
not an interpretation that is as consistent as possible
simplistic example: $\Gamma=\{p, \boldsymbol{q}, \sim \boldsymbol{p} \vee r, \sim \boldsymbol{q} \vee s, \sim \boldsymbol{q}\}$
$\Gamma \nvdash_{\mathrm{CLuN}} s$ and $\Gamma \nvdash_{\mathrm{CLuN}} r$
one wants to consider a formula of the form $A \wedge \sim A$ as false, unless and until proven otherwise ($=$ unless the premises do not permit so)
Γ requires that $q \wedge \sim q$ is true, but not that $p \wedge \sim p$ is true
if Γ is true and $p \wedge \sim p$ is false, r is true !

put differently:

- the theory was intended to be consistent, but turned out inconsistent - one searches for a consistent replacement of 'the theory'

put differently:

- the theory was intended to be consistent, but turned out inconsistent
- one searches for a consistent replacement of 'the theory'
'the theory'
'the theory in its full richness,
except for the pernicious consequences of its inconsistency'

put differently:

- the theory was intended to be consistent, but turned out inconsistent
- one searches for a consistent replacement of 'the theory'
'the theory'
$=$
'the theory in its full richness,
except for the pernicious consequences of its inconsistency'
put differently:
the theory, interpreted as consistently as possible
$=$ consider inconsistencies as false, except where the theory prevents so

put differently:

- the theory was intended to be consistent, but turned out inconsistent
- one searches for a consistent replacement of 'the theory'
'the theory'
$=$
'the theory in its full richness, except for the pernicious consequences of its inconsistency'
put differently:
the theory, interpreted as consistently as possible
$=$ consider inconsistencies as false, except where the theory prevents so

Can this be explicated formally, and how?

2.3 Going Adaptive: Dynamic Proofs

simplistic example: $\Gamma=\{p, q, \sim p \vee r, \sim q \vee s, \sim q\}$

2.3 Going Adaptive: Dynamic Proofs

simplistic example: $\Gamma=\{p, q, \sim p \vee r, \sim q \vee s, \sim q\}$

1	p	Prem	\emptyset
2	q	Prem	\emptyset
3	$\sim \boldsymbol{p} \vee r$	Prem	\emptyset
4	$\sim \boldsymbol{q} \vee s$	Prem	\emptyset
5	$\sim \boldsymbol{q}$	Prem	\emptyset

2.3 Going Adaptive: Dynamic Proofs

simplistic example: $\Gamma=\{p, q, \sim p \vee r, \sim q \vee s, \sim q\}$

1	p	Prem	\emptyset
2	q	Prem	\emptyset
3	$\sim p \vee r$	Prem	\emptyset
4	$\sim q \vee s$	Prem	\emptyset
5	$\sim q$	Prem	\emptyset
6	r	1,$3 ; R C$	$\{p \wedge \sim p\}$

2.3 Going Adaptive: Dynamic Proofs

simplistic example: $\Gamma=\{p, q, \sim p \vee r, \sim q \vee s, \sim q\}$

1	\boldsymbol{p}	Prem	\emptyset
2	\boldsymbol{q}	Prem	\emptyset
3	$\sim \boldsymbol{p} \vee r$	Prem	\emptyset
4	$\sim \boldsymbol{q} \vee s$	Prem	\emptyset
5	$\sim \boldsymbol{q}$	Prem	\emptyset
6	r	1,$3 ; \mathrm{RC}$	$\{p \wedge \sim \boldsymbol{p}\}$
7	s	2,$4 ; \mathrm{RC}$	$\{q \wedge \sim q\}$

2.3 Going Adaptive: Dynamic Proofs

simplistic example: $\Gamma=\{p, q, \sim p \vee r, \sim q \vee s, \sim q\}$

1	p	Prem	\emptyset	
2	\boldsymbol{q}	Prem	\emptyset	
3	$\sim p \vee r$	Prem	\emptyset	
4	$\sim q \vee s$	Prem	\emptyset	
5	$\sim q$	Prem	\emptyset	
6	r	1,$3 ; R C$	$\{p \wedge \sim p\}$	
7	s	2,$4 ; R C$	$\{q \wedge \sim q\}$	\checkmark
8	$q \wedge \sim q$	2,$5 ; R U$	\emptyset	

2.3 Going Adaptive: Dynamic Proofs

simplistic example: $\Gamma=\{p, q, \sim p \vee r, \sim q \vee s, \sim q\}$

1	\boldsymbol{p}	Prem	\emptyset	
2	\boldsymbol{q}	Prem	\emptyset	
3	$\sim \boldsymbol{p} \vee r$	Prem	\emptyset	
4	$\sim \boldsymbol{q} \vee s$	Prem	\emptyset	
5	$\sim \boldsymbol{q}$	Prem	\emptyset	
6	r	1,$3 ; \mathrm{RC}$	$\{\boldsymbol{p} \wedge \sim \boldsymbol{p}\}$	
7	s	2,$4 ; \mathrm{RC}$	$\{q \wedge \sim \boldsymbol{q}\}$	\checkmark
8	$\boldsymbol{q} \wedge \sim \boldsymbol{q}$	2,5;RU	\emptyset	

nothing interesting happens when the proof is continued
no mark will be removed or added

Can marked lines become unmarked?

1	$(\boldsymbol{p} \wedge \boldsymbol{q}) \wedge t$
2	$\sim \boldsymbol{p} \vee r$
3	$\sim \boldsymbol{q} \vee s$
4	$\sim \boldsymbol{p} \vee \sim \boldsymbol{q}$
5	$\boldsymbol{t} \supset \sim \boldsymbol{p}$

PREM Ø
PREM Ø
PREM Ø
PREM Ø
PREM
\emptyset

Can marked lines become unmarked?

1	$(\boldsymbol{p} \wedge \boldsymbol{q}) \wedge \boldsymbol{t}$
2	$\sim \boldsymbol{p} \vee r$
3	$\sim \boldsymbol{q} \vee s$
4	$\sim \boldsymbol{p} \vee \sim \boldsymbol{q}$
5	$\boldsymbol{t} \supset \sim \boldsymbol{p}$
6	r
7	s

PREM	\emptyset
PREM	\emptyset
1,$2 ; R C$	$\{p \wedge \sim p\}$
1,$3 ; R C$	$\{q \wedge \sim q\}$

Can marked lines become unmarked?

1	$(p \wedge q) \wedge t$	PREM	\emptyset	
2	$\sim \boldsymbol{p} \vee r$	PREM	\emptyset	
3	$\sim q \vee s$	PREM	\emptyset	
4	$\sim \boldsymbol{p} \vee \sim \boldsymbol{q}$	PREM	\emptyset	
5	$\boldsymbol{t} \supset \sim \boldsymbol{p}$	PREM	\emptyset	
6	r	1,$2 ; \mathrm{RC}$	$\{p \wedge \sim \boldsymbol{p}\}$	$\sqrt{ }$
7	s	1,$3 ; \mathrm{RC}$	$\{q \wedge \sim q\}$	$\sqrt{ }$
8	$(p \wedge \sim \boldsymbol{p}) \vee(\boldsymbol{q} \wedge \sim \boldsymbol{q})$	1,$4 ; \mathrm{RU}$	\emptyset	

Can marked lines become unmarked?

1	$(p \wedge q) \wedge t$	PREM	\emptyset
2	$\sim \boldsymbol{p} \vee r$	PREM	\emptyset
3	$\sim q \vee s$	PREM	\emptyset
4	$\sim \boldsymbol{p} \vee \sim q$	PREM	\emptyset
5	$t \supset \sim p$	PREM	\emptyset
6	r	1,$2 ; \mathrm{RC}$	$\{p \wedge \sim p\}$
7	s	1,$3 ; \mathrm{RC}$	$\{q \wedge \sim q\}$
8	$(p \wedge \sim p) \vee(q \wedge \sim q)$	1,$4 ; \mathrm{RU}$	\emptyset
9	$p \wedge \sim p$	1,$5 ; \mathrm{RU}$	\emptyset

Can marked lines become unmarked?

1	$(p \wedge q) \wedge t$	PREM	\emptyset
2	$\sim \boldsymbol{p} \vee r$	PREM	\emptyset
3	$\sim q \vee s$	PREM	\emptyset
4	$\sim \boldsymbol{p} \vee \sim q$	PREM	\emptyset
5	$t \supset \sim p$	PREM	\emptyset
6	r	1,$2 ; \mathrm{RC}$	$\{p \wedge \sim p\}$
7	s	1,$3 ; \mathrm{RC}$	$\{q \wedge \sim q\}$
8	$(p \wedge \sim p) \vee(q \wedge \sim q)$	1,$4 ; \mathrm{RU}$	\emptyset
9	$p \wedge \sim p$	1,$5 ; \mathrm{RU}$	\emptyset

nothing interesting happens when the proof is continued
no mark will be removed or added

Making marking precise
the dynamic proofs need to explicate the dynamic reasoning

Making marking precise

the dynamic proofs need to explicate the dynamic reasoning at the level of the proofs, the dynamics needs to be controlled

Making marking precise

the dynamic proofs need to explicate the dynamic reasoning at the level of the proofs, the dynamics needs to be controlled

- the conditions
- the marking definition

Making marking precise

the dynamic proofs need to explicate the dynamic reasoning at the level of the proofs, the dynamics needs to be controlled

- the conditions
- the marking definition

Which lines are marked?

Which lines are marked?

Which lines are marked?
Dab-formula: disjunction of inconsistencies, $\operatorname{Dab}(\Delta)$

Which lines are marked?
Dab-formula: disjunction of inconsistencies, $\operatorname{Dab}(\Delta)$
minimal $D a b$-formula at stage s :
at stage s :
$\operatorname{Dab}(\Delta)$ derived on the empty condition for every $\Delta^{\prime} \subset \Delta, \operatorname{Dab}\left(\Delta^{\prime}\right)$ not derived on the empty condition

Which lines are marked?
Dab-formula: disjunction of inconsistencies, $\operatorname{Dab}(\Delta)$
minimal Dab-formula at stage s :
at stage s :
$\operatorname{Dab}(\Delta)$ derived on the empty condition
for every $\Delta^{\prime} \subset \Delta, \operatorname{Dab}\left(\Delta^{\prime}\right)$ not derived on the empty condition
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas at stage s,
$U_{s}(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$

Which lines are marked?
Dab-formula: disjunction of inconsistencies, $\operatorname{Dab}(\Delta)$
minimal Dab-formula at stage s :
at stage s :
$\operatorname{Dab}(\Delta)$ derived on the empty condition for every $\Delta^{\prime} \subset \Delta, \operatorname{Dab}\left(\Delta^{\prime}\right)$ not derived on the empty condition
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas at stage s, $U_{s}(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$
where Θ is the condition of line i, line i is marked iff $\Theta \cap U_{s}(\Gamma) \neq \emptyset$

Final derivability
derivability seems to be unstable: it changes from stage to stage

Final derivability
derivability seems to be unstable: it changes from stage to stage next to derivability at a stage, one wants a stable notion of derivability: final derivability: $\boldsymbol{\Gamma} \vdash_{\mathrm{ACLuN}^{r}} \boldsymbol{A}$

Final derivability

derivability seems to be unstable: it changes from stage to stage
next to derivability at a stage,
one wants a stable notion of derivability: final derivability: $\boldsymbol{\Gamma} \vdash_{\mathrm{ACLuN}^{r}} \boldsymbol{A}$
idea behind final derivability:
\boldsymbol{A} is derived at an unmarked line \boldsymbol{i} and
the proof is stable with respect to \boldsymbol{i}

Final derivability

derivability seems to be unstable: it changes from stage to stage
next to derivability at a stage,
one wants a stable notion of derivability: final derivability: $\Gamma \vdash_{\mathrm{ACLuN}^{r}} \boldsymbol{A}$
idea behind final derivability:
\boldsymbol{A} is derived at an unmarked line \boldsymbol{i} and
the proof is stable with respect to \boldsymbol{i}
1
line \boldsymbol{i} will not be marked in any extension of the proof
2.4 Going Adaptive: Semantics
consider the CLuN-models of the premise set Γ
2.4 Going Adaptive: Semantics
consider the CLuN-models of the premise set Γ
$\operatorname{Dab}(\Delta)$ is a minimal $D a b$-consequence of Γ :
$\Gamma \vDash_{\mathrm{CLuN}} \operatorname{Dab}(\Delta) \quad$ and \quad for all $\Delta^{\prime} \subset \Delta, \Gamma \nvdash_{\mathrm{CLuN}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
2.4 Going Adaptive: Semantics
consider the CLuN-models of the premise set Γ
$\operatorname{Dab}(\Delta)$ is a minimal $D a b$-consequence of Γ :
$\Gamma \vDash_{\mathrm{CLuN}} \operatorname{Dab}(\Delta)$ and for all $\Delta^{\prime} \subset \Delta, \Gamma \nvdash_{\mathrm{CLuN}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-consequences of Γ, $U(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$
2.4 Going Adaptive: Semantics
consider the CLuN-models of the premise set Γ
$\operatorname{Dab}(\Delta)$ is a minimal $D a b$-consequence of Γ :
$\Gamma \vDash_{\mathrm{CLuN}} \operatorname{Dab}(\Delta)$ and for all $\Delta^{\prime} \subset \Delta, \Gamma \nvdash_{\mathrm{CLuN}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-consequences of Γ, $U(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$
$A b(M)=\{\exists(A \wedge \sim A) \mid M \models \exists(A \wedge \sim A)\}$
2.4 Going Adaptive: Semantics
consider the CLuN-models of the premise set Γ
$\operatorname{Dab}(\Delta)$ is a minimal $D a b$-consequence of Γ :
$\Gamma \vDash_{\mathrm{CLuN}} \operatorname{Dab}(\Delta) \quad$ and \quad for all $\Delta^{\prime} \subset \Delta, \Gamma \nvdash_{\mathrm{CLuN}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-consequences of Γ,
$U(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$
$A b(M)=\{\exists(A \wedge \sim A) \mid M \models \exists(A \wedge \sim A)\}$
a CLuN-model M of Γ is reliable iff $A b(M) \subseteq U(\Gamma)$
2.4 Going Adaptive: Semantics
consider the CLuN-models of the premise set Γ
$\operatorname{Dab}(\Delta)$ is a minimal $D a b$-consequence of Γ :
$\Gamma \vDash_{\mathrm{CLuN}} \operatorname{Dab}(\Delta) \quad$ and \quad for all $\Delta^{\prime} \subset \Delta, \Gamma \nvdash_{\mathrm{CLuN}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-consequences of Γ,
$U(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$
$A b(M)=\{\exists(A \wedge \sim A) \mid M \models \exists(A \wedge \sim A)\}$
a CLuN-model M of Γ is reliable iff $A b(M) \subseteq U(\Gamma)$
$\Gamma \vDash_{\mathrm{ACLuN}^{r}} \boldsymbol{A}$ iff all reliable models of $\boldsymbol{\Gamma}$ verify \boldsymbol{A}
2.4 Going Adaptive: Semantics
consider the CLuN-models of the premise set Γ
$\operatorname{Dab}(\Delta)$ is a minimal $D a b$-consequence of Γ :
$\Gamma \vDash_{\mathrm{CLuN}} \operatorname{Dab}(\Delta) \quad$ and \quad for all $\Delta^{\prime} \subset \Delta, \Gamma \nvdash_{\mathrm{CLuN}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-consequences of Γ,
$U(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$
$A b(M)=\{\exists(A \wedge \sim A) \mid M \models \exists(A \wedge \sim A)\}$
a CLuN-model M of Γ is reliable iff $A b(M) \subseteq U(\Gamma)$
$\Gamma \vDash_{\mathrm{ACLuN}^{r}} \boldsymbol{A}$ iff all reliable models of $\boldsymbol{\Gamma}$ verify \boldsymbol{A}
it is provable that $\Gamma \vdash_{\mathrm{ACLuN}^{r}} \boldsymbol{A}$ iff $\Gamma \vDash_{\mathrm{ACLuN}^{r}} \boldsymbol{A}$

2.5 Strategies

naive approach:
Simple strategy: take $A \wedge \sim A$ to be false, unless $\Gamma \vdash^{\mathrm{CLuN}} \boldsymbol{A} \wedge \sim A$

2.5 Strategies

naive approach:
Simple strategy: take $\boldsymbol{A} \wedge \sim A$ to be false, unless $\Gamma \vdash_{\mathrm{CLuN}} A \wedge \sim A$
the Simple strategy is inadequate (in this case) because, for some Γ, $\operatorname{Dab}(\Delta)$ is a minimal $D a b$-consequence of Γ and Δ is not a singleton.

2.5 Strategies

naive approach:
Simple strategy: take $A \wedge \sim A$ to be false, unless $\Gamma \vdash^{\mathrm{CLuN}} \boldsymbol{A} \wedge \sim A$
the Simple strategy is inadequate (in this case) because, for some Γ, $\operatorname{Dab}(\Delta)$ is a minimal $D a b$-consequence of Γ and Δ is not a singleton.
before, we used the Reliability strategy
there are other strategies, each suitable for specific applications

3 The Standard Format

3.1 The Problem
3.2 The Format
3.3 Annotated Dynamic Proofs: Reliability
3.4 Semantics
3.5 Annotated Dynamic Proofs: Minimal Abnormality
3.6 Some Properties

3.1 The Problem

many adaptive logics seem to have a common structure
others can be given this structure under a translation

3.1 The Problem

many adaptive logics seem to have a common structure
others can be given this structure under a translation
the structure is central for the metatheoretic proofs
many adaptive logics seem to have a common structure
others can be given this structure under a translation
the structure is central for the metatheoretic proofs
whence the plan:

- describe the structure: the SF (standard format)
- define the proof theory and semantics from the SF
- prove as many properties as possible by relying on the SF only

3.2 The Format

- lower limit logic
- set of abnormalities Ω
- strategy
3.2 The Format
- Iower limit Iogic monotonic and compact logic
- set of abnormalities Ω : characterized by a (possibly restricted) logical form
- strategy:

Reliability, Minimal Abnormality, ...

- Iower limit logic monotonic and compact logic
- set of abnormalities Ω : characterized by a (possibly restricted) logical form
- strategy:

Reliability, Minimal Abnormality, ...
upper limit logic:
ULL $=$ LLL + axiom/rule that trivializes abnormalities
semantically: the LLL-models that verify no abnormality

- Iower limit logic monotonic and compact logic
- set of abnormalities Ω : characterized by a (possibly restricted) logical form
- strategy:

Reliability, Minimal Abnormality, ...
upper limit logic:
ULL $=$ LLL + axiom/rule that trivializes abnormalities
semantically: the LLL-models that verify no abnormality
flip-flop

Example 1: ACLuN ${ }^{r}$

- lower limit logic: CLuN
- set of abnormalities: $\Omega=\{\exists(A \wedge \sim A) \mid A \in \mathcal{F}\}$
- strategy: Reliability

Example 1: ACLuN ${ }^{r}$

- Iower limit logic: CLuN
- set of abnormalities: $\Omega=\{\exists(A \wedge \sim A) \mid A \in \mathcal{F}\}$
- strategy: Reliability
upper limit logic: $\mathrm{CL}=\mathrm{CLuN}+(\boldsymbol{A} \wedge \sim \boldsymbol{A}) \supset \boldsymbol{B}$
semantically: the CLuN-models that verify no inconsistency

Example 2: ACLuN ${ }^{m}$

- lower limit logic: CLuN
- set of abnormalities: $\Omega=\{\exists(A \wedge \sim A) \mid A \in \mathcal{F}\}$
- strategy: Minimal Abnormality

Example 2: ACLuN ${ }^{m}$

- Iower limit logic: CLuN
- set of abnormalities: $\Omega=\{\exists(A \wedge \sim A) \mid A \in \mathcal{F}\}$
- strategy: Minimal Abnormality
upper limit logic: $\mathrm{CL}=\mathrm{CLuN}+(\boldsymbol{A} \wedge \sim \boldsymbol{A}) \supset \boldsymbol{B}$
semantically: the CLuN-models that verify no inconsistency

Example 3: IL m

- Iower limit logic: CL
- set of abnormalities: $\Omega=\left\{\exists \boldsymbol{A} \wedge \exists \sim \boldsymbol{A} \mid \boldsymbol{A} \in \mathcal{F}^{\circ}\right\}$
- strategy: Minimal Abnormality

Example 3: $\mathbf{I L}^{m}$

- Iower limit logic: CL
. set of abnormalities: $\Omega=\left\{\exists A \wedge \exists \sim A \mid A \in \mathcal{F}^{\circ}\right\}$
- strategy: Minimal Abnormality
upper limit logic: $\mathrm{UCL}=\mathrm{CL}+\exists \boldsymbol{\alpha} \boldsymbol{A}(\boldsymbol{\alpha}) \supset \forall \boldsymbol{\alpha} \boldsymbol{A}(\boldsymbol{\alpha})$
semantically: the CL-models that verify no abnormality (are uniform)

Example 4: AT ${ }^{1 m}$ (extension with plausible statements)

- lower limit logic: T (a certain predicative version)
- set of abnormalities: $\Omega=\left\{\diamond \boldsymbol{A} \wedge \sim \boldsymbol{A} \mid \boldsymbol{A} \in \mathcal{W}^{p}\right\}$
- strategy: Minimal Abnormality

Example 4: AT ${ }^{1 m}$ (extension with plausible statements)

- lower limit logic: T (a certain predicative version)
- set of abnormalities: $\Omega=\left\{\diamond \boldsymbol{A} \wedge \sim \boldsymbol{A} \mid \boldsymbol{A} \in \mathcal{W}^{p}\right\}$
- strategy: Minimal Abnormality
upper limit logic: Triv $=\mathbf{T}+\diamond \boldsymbol{A} \supset \boldsymbol{A}$
semantically: T-models that verify no abnormality (nothing contingent)

Example 4: AT ${ }^{1 m}$ (extension with plausible statements)

- lower limit logic: T (a certain predicative version)
- set of abnormalities: $\Omega=\left\{\diamond \boldsymbol{A} \wedge \sim \boldsymbol{A} \mid \boldsymbol{A} \in \mathcal{W}^{p}\right\}$
- strategy: Minimal Abnormality
upper limit logic: Triv $=\mathbf{T}+\diamond \boldsymbol{A} \supset \boldsymbol{A}$
semantically: T-models that verify no abnormality (nothing contingent) (includes the one world models)
the SF provides AL with:
- a dynamic proof theory
- a semantics
- most of the metatheory

3.3 Annotated Dynamic Proofs: Reliability

rules of inference and marking definition
a line consists of

- a line number
- a formula
- a justification (line numbers + rule)
- a condition (finite subset of Ω)
3.3 Annotated Dynamic Proofs: Reliability

rules of inference and marking definition

a line consists of

- a line number
- a formula
- a justification (line numbers + rule)
- a condition (finite subset of Ω)
for all adaptive logics of the described kind:
\boldsymbol{A} is derivable on the condition $\boldsymbol{\Delta}$ iff
$\boldsymbol{A} \vee \operatorname{Dab}(\Delta)$ is derivable (on the condition \emptyset) (in the dynamic proof) iff
$\Gamma \vdash_{\mathrm{LLL}} A \vee \operatorname{Dab}(\Delta)$
(in the dynamic proof)

Rules of inference (depend on LLL and Ω, not on the strategy)

PREM If $\boldsymbol{A} \in \Gamma$:

RU

$$
\text { If } A_{1}, \ldots, A_{n} \vdash_{\text {LLL }} B
$$

$A_{1} \quad \Delta_{1}$

\cdots	\cdots
A_{n}	Δ_{n}
B	$\Delta_{1} \cup \ldots \cup \Delta_{n}$

RC If $A_{1}, \ldots, A_{n} \vdash_{\text {LLL }} B \vee \operatorname{Dab}(\Theta) \quad A_{1} \quad \Delta_{1}$

$$
\begin{array}{ll}
A_{n} & \Delta_{n} \\
\hline B & \Delta_{1} \cup \ldots \cup \Delta_{n} \cup \Theta
\end{array}
$$

Marking Definition for Reliability

where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas derived on the condition \emptyset at stage $s, \quad U_{s}(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas derived on the condition \emptyset at stage $s, \quad U_{s}(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$

Definition

where $\boldsymbol{\Delta}$ is the condition of line \boldsymbol{i}, line i is marked (at stage s) iff $\Delta \cap U_{s}(\Gamma) \neq \emptyset$
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas derived on the condition \emptyset at stage $s, \quad U_{s}(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$

Definition

where $\boldsymbol{\Delta}$ is the condition of line \boldsymbol{i}, line i is marked (at stage s) iff $\Delta \cap U_{s}(\Gamma) \neq \emptyset$
\Rightarrow idea for consequence set applied to stage of proof
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas derived on the condition \emptyset at stage $s, \quad U_{s}(\Gamma)=\Delta_{1} \cup \ldots \cup \Delta_{n}$

Definition

where $\boldsymbol{\Delta}$ is the condition of line \boldsymbol{i}, line i is marked (at stage s) iff $\Delta \cap U_{s}(\Gamma) \neq \emptyset$
\Rightarrow idea for consequence set applied to stage of proof
Marking Definition for Minimal Abnormality: later

Derivability at a stage vs. final derivability
idea: \boldsymbol{A} derived on line \boldsymbol{i} and the proof is stable with respect to \boldsymbol{i}

Derivability at a stage vs. final derivability
idea: \boldsymbol{A} derived on line \boldsymbol{i} and the proof is stable with respect to \boldsymbol{i}
stability concerns a specific consequence and a specific line !
idea: \boldsymbol{A} derived on line \boldsymbol{i} and the proof is stable with respect to \boldsymbol{i}
stability concerns a specific consequence and a specific line !

Definition

\boldsymbol{A} is finally derived from $\boldsymbol{\Gamma}$ on line \boldsymbol{i} of a proof at stage s iff
(i) \boldsymbol{A} is the second element of line \boldsymbol{i},
(ii) line i is unmarked at stage s, and
(iii) any extension of the proof may be further extended in such a way that line \boldsymbol{i} is unmarked.
idea: \boldsymbol{A} derived on line \boldsymbol{i} and the proof is stable with respect to \boldsymbol{i}
stability concerns a specific consequence and a specific line !

Definition

\boldsymbol{A} is finally derived from $\boldsymbol{\Gamma}$ on line \boldsymbol{i} of a proof at stage s iff
(i) \boldsymbol{A} is the second element of line \boldsymbol{i},
(ii) line i is unmarked at stage s, and
(iii) any extension of the proof may be further extended in such a way that line i is unmarked.

Definition

$\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}(\boldsymbol{A}$ is finally AL -derivable from $\boldsymbol{\Gamma})$ iff \boldsymbol{A} is finally derived on a line of a proof from Γ.
idea: \boldsymbol{A} derived on line \boldsymbol{i} and the proof is stable with respect to \boldsymbol{i}
stability concerns a specific consequence and a specific line !

Definition

\boldsymbol{A} is finally derived from $\boldsymbol{\Gamma}$ on line \boldsymbol{i} of a proof at stage s iff
(i) \boldsymbol{A} is the second element of line \boldsymbol{i},
(ii) line i is unmarked at stage s, and
(iii) any extension of the proof may be further extended in such a way that line i is unmarked.

Definition

$\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}(\boldsymbol{A}$ is finally AL -derivable from $\boldsymbol{\Gamma})$ iff \boldsymbol{A} is finally derived on a line of a proof from Γ.

Even at the predicative level, there are criteria for final derivability.

LLL invalidates certain rules of ULL

AL invalidates certain applications of rules of ULL

LLL invalidates certain rules of ULL

AL invalidates certain applications of rules of ULL

ULL extends LLL by validating some further rules

AL extends LLL by validating some applications of some further rules

example

adaptive logic: IL

- lower limit logic: CL
- set of abnormalities: $\Omega=\left\{\exists A \wedge \exists \sim A \mid A \in \mathcal{F}^{\circ}\right\}$
- strategy: Reliability

$$
\Gamma=\{(P a \wedge \sim Q a) \wedge \sim R a, \sim P b \wedge(Q b \wedge R b), P c \wedge R c, Q d \wedge \sim P e\}
$$

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$

PREM
PREM \emptyset
PREM Ø
PREM \emptyset
number of data of each form immaterial
\Rightarrow same generalizations derivable from $\{P a\}$ and from $\{P a, P b\}$
in conditions and " $\boldsymbol{D a b}$ "-expressions, $\boldsymbol{A}(\boldsymbol{x})$ abbreviates
$\exists x A(x) \wedge \exists \sim x A(x)$

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$
5	$\forall x(Q x \supset R x)$

PREM	\emptyset
PREM	\emptyset
PREM	\emptyset
PREM	\emptyset
2; RC	$\{Q \boldsymbol{x} \supset \boldsymbol{R} \boldsymbol{x}\}$

number of data of each form immaterial
\Rightarrow same generalizations derivable from $\{P a\}$ and from $\{P a, P b\}$
in conditions and " $D a b$ "-expressions, $\boldsymbol{A}(\boldsymbol{x})$ abbreviates
$\exists x A(x) \wedge \exists \sim x A(x)$

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$
5	$\forall x(Q x \supset R x)$
6	$R d$

PREM	\emptyset
PREM	\emptyset
PREM	\emptyset
PREM	\emptyset
2; RC	$\{Q x \supset \boldsymbol{R} x\}$
4, 5; RU	$\{Q x \supset \boldsymbol{R} x\}$

number of data of each form immaterial
\Rightarrow same generalizations derivable from $\{P a\}$ and from $\{P a, P b\}$
in conditions and " $D a b$ "-expressions, $\boldsymbol{A}(\boldsymbol{x})$ abbreviates
$\exists x A(x) \wedge \exists \sim x A(x)$

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$
5	$\forall x(Q x \supset R x)$
6	$R d$
7	$\forall x(\sim P x \supset Q x)$
8	$Q e$

PREM	\emptyset
PREM	\emptyset
PREM	\emptyset
PREM	\emptyset
2; RC	$\{Q x \supset \boldsymbol{R} x\}$
4, 5; RU	$\{Q x \supset \boldsymbol{R} x\}$
2; RC	$\{\sim P \boldsymbol{P} \supset \boldsymbol{Q} \boldsymbol{x}\}$
4, 7; RU	$\{\sim \boldsymbol{P} \boldsymbol{x} \supset \boldsymbol{Q} \boldsymbol{x}\}$

number of data of each form immaterial
\Rightarrow same generalizations derivable from $\{P a\}$ and from $\{P a, P b\}$
in conditions and " $D a b$ "-expressions, $\boldsymbol{A}(\boldsymbol{x})$ abbreviates
$\exists x A(x) \wedge \exists \sim x A(x)$

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$

PREM	\emptyset
PREM	\emptyset
PREM	\emptyset
PREM	\emptyset

1	$(P a \wedge \sim Q a) \wedge \sim R a$	PREM	\emptyset
2	$\sim P b \wedge(Q b \wedge R b)$	PREM	\emptyset
3	$P c \wedge R c$	PREM	\emptyset
4	$Q d \wedge \sim P e$	PREM	\emptyset
\cdots			
9	$\forall x(P x \supset \sim R x)$	$1 ; R C$	$\{P x \supset \sim R x\}$

1	$(P a \wedge \sim Q a) \wedge \sim R a$	PREM	\emptyset
2	$\sim P b \wedge(Q b \wedge R b)$	PREM	\emptyset
3	$P c \wedge R c$	PREM	\emptyset
4	$Q d \wedge \sim P e$	PREM	\emptyset
\cdots			
$9^{L 10}$	$\forall x(P x \supset \sim R x)$	1;RC	$\{P x \supset \sim R x\}$
10	$D a b(P x \supset \sim R x)$	1,$3 ; R U$	\emptyset

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$

PREM	\emptyset
PREM	\emptyset
PREM	\emptyset
PREM	\emptyset

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$
\cdots	
11	$\forall x(P x \supset \sim Q x)$
12	$\sim Q c$

$\begin{array}{ll}\text { PREM } & \emptyset \\ \text { PREM } & \emptyset \\ \text { PREM } & \emptyset \\ \text { PREM } & \emptyset\end{array}$

1; RC $\quad\{P x \supset \sim Q x\}$
3, 11; RU $\quad\{P x \supset \sim Q x\}$

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$
\cdots	
11	$\forall x(P x \supset \sim Q x)$
12	$\sim Q c$
13	$\forall x(R x \supset Q x)$
14	$Q c$

$\begin{array}{ll}\text { PREM } & \emptyset \\ \text { PREM } & \emptyset \\ \text { PREM } & \emptyset \\ \text { PREM } & \emptyset\end{array}$

1; RC $\quad\{P x \supset \sim Q x\}$
3, 11; RU $\quad\{P x \supset \sim Q x\}$
2; RC $\quad\{R x \supset Q x\}$
3, 13; RU $\{R x \supset Q x\}$

1	$(P a \wedge \sim Q a) \wedge \sim R a$	PREM	\emptyset
2	$\sim P b \wedge(Q b \wedge R b)$	PREM	\emptyset
3	$P c \wedge R c$	PREM	\emptyset
4	$Q d \wedge \sim P e$	PREM	\emptyset
\cdots			
11	$\forall x(P x \supset \sim Q x)$	1; RC	$\{P x \supset \sim Q x\}$
12	$\sim Q c$	3, 11; RU	$\{P x \supset \sim Q x\}$
13	$\forall x(R x \supset Q x)$	2; RC	$\{R x \supset Q x\}$
14	$Q c$	3, 13; RU	$\{R x \supset Q x\}$
15	$\exists x \sim(P x \supset \sim Q x) \vee \exists x \sim(R x \supset Q x)$	3; RU	\emptyset
16	$\exists x(P x \supset \sim Q x) \wedge \exists x(R x \supset Q x)$	1,2;RU	\emptyset

1	$(P a \wedge \sim Q a) \wedge \sim R a$	PREM	\emptyset
2	$\sim P b \wedge(Q b \wedge R b)$	PREM	\emptyset
3	$P c \wedge R c$	PREM	\emptyset
4	$Q d \wedge \sim P e$	PREM	\emptyset
\cdots			
$11^{L 17}$	$\forall x(P x \supset \sim Q x)$	1; RC	$\{P x \supset \sim Q x\}$
$12^{L 17}$	$\sim Q c$	3, 11; RU	$\{P x \supset \sim Q x\}$
$13^{L 17}$	$\forall x(R x \supset Q x)$	2; RC	$\{R x \supset Q x\}$
$14^{L 17}$	$Q c$	3, 13; RU	$\{R x \supset Q x\}$
15	$\exists x \sim(P x \supset \sim Q x) \vee \exists x \sim(R x \supset Q x)$	3; RU	\emptyset
16	$\exists x(P x \supset \sim Q x) \wedge \exists x(R x \supset Q x)$	1,2;RU	
17	$D a b\{P x \supset \sim Q x, R x \supset Q x\}$	15,$16 ; R U \emptyset$	

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$

PREM	\emptyset
PREM	\emptyset
PREM	\emptyset
PREM	\emptyset

1	$(P a \wedge \sim Q a) \wedge \sim R a$
2	$\sim P b \wedge(Q b \wedge R b)$
3	$P c \wedge R c$
4	$Q d \wedge \sim P e$
\cdots	
18	$\forall x(P x \supset S x)$
19	$S a$

PREM \emptyset
PREM \emptyset
PREM \emptyset
PREM \emptyset

4; RC $\quad\{P x \supset S x\}$
1, 18; RU $\{P x \supset S x\}$

1	$(P a \wedge \sim Q a) \wedge \sim R a$	PREM	\emptyset
2	$\sim P b \wedge(Q b \wedge R b)$	PREM	\emptyset
3	$P c \wedge R c$	PREM	\emptyset
4	$Q d \wedge \sim P e$	PREM	\emptyset
\cdots			
18	$\forall x(P x \supset S x)$	$4 ; R C$	$\{P x \supset S x\}$
19	$S a$	1,$18 ; R U$	$\{P x \supset S x\}$
20	$\exists x \sim(P x \supset S x) \vee \exists x \sim(P x \supset \sim S x)$	3; RU	\emptyset
21	$\exists x(P x \supset S x) \wedge \exists x(P x \supset \sim S x)$	$4 ; R U$	\emptyset

1	$(P a \wedge \sim Q a) \wedge \sim R a$	PREM	\emptyset
2	$\sim P b \wedge(Q b \wedge R b)$	PREM	\emptyset
3	$P c \wedge R c$	PREM	\emptyset
4	$Q d \wedge \sim P e$	PREM	\emptyset
\cdots			
$18^{L 22}$	$\forall x(P x \supset S x)$	4; RC	$\{P x \supset S x\}$
$19^{L 22}$	$S a$	1, 18; RU	$\{P x \supset S x\}$
20	$\exists x \sim(P x \supset S x) \vee \exists x \sim(P x \supset \sim S x)$	3; RU	\emptyset
21	$\exists x(P x \supset S x) \wedge \exists x(P x \supset \sim S x)$	$4 ; R U$	\emptyset
22	$D a b\{P x \supset S x, P x \supset \sim S x\}$	20,$21 ; R U \emptyset$	

Some theoretical stuff

a stage (of a proof) is a sequence of lines

Some theoretical stuff

a stage (of a proof) is a sequence of lines
a proof is a chain of (1 or more) stages
a subsequent stage is obtained by adding a line to the stage
the marking definition determines which lines of the stage are marked (marks may come and go with the stage)

Some theoretical stuff

a stage (of a proof) is a sequence of lines
a proof is a chain of (1 or more) stages
a subsequent stage is obtained by adding a line to the stage
the marking definition determines which lines of the stage are marked (marks may come and go with the stage)
an extension of a proof P is a proof P^{\prime} that has P as its initial fragment
a stage (of a proof) is a sequence of lines
a proof is a chain of (1 or more) stages
a subsequent stage is obtained by adding a line to the stage
the marking definition determines which lines of the stage are marked (marks may come and go with the stage)
an extension of a proof P is a proof P^{\prime} that has P as its initial fragment

Definition (repetition)
\boldsymbol{A} is finally derived from $\boldsymbol{\Gamma}$ on line i of a proof at stage s iff
(i) \boldsymbol{A} is the second element of line \boldsymbol{i},
(ii) line i is not marked at stage s, and
(iii) any extension of the proof may be further extended in such a way that line i is unmarked.
for some logics (esp. Minimal Abnormality strategy), premise sets and conclusions, stability (final derivability) is reached only after infinitely many stages
for some logics (esp. Minimal Abnormality strategy), premise sets and conclusions, stability (final derivability) is reached only after infinitely many stages
if a stage has infinitely many lines, the next stage is reached by inserting a line (variant)
for some logics (esp. Minimal Abnormality strategy), premise sets and conclusions, stability (final derivability) is reached only after infinitely many stages
if a stage has infinitely many lines, the next stage is reached by inserting a line (variant)
pace Leon Horsten (transfinite proofs)

Game theoretic approaches to final derivability

example:
proponent provides proof P in which \boldsymbol{A} is derived at an unmarked line \boldsymbol{i}

Game theoretic approaches to final derivability

example:
proponent provides proof P in which \boldsymbol{A} is derived at an unmarked line \boldsymbol{i}
\boldsymbol{A} is finally derived at \boldsymbol{i}
iff
any extension (by the opponent) of P into a P^{\prime} in which i is marked
can be extended (by the proponent) into a $\mathrm{P}^{\prime \prime}$ in which \boldsymbol{i} is unmarked

Game theoretic approaches to final derivability

example:
proponent provides proof P in which \boldsymbol{A} is derived at an unmarked line \boldsymbol{i}
\boldsymbol{A} is finally derived at \boldsymbol{i}
iff
any extension (by the opponent) of P into a P^{\prime} in which i is marked
can be extended (by the proponent) into a $\mathrm{P}^{\prime \prime}$ in which \boldsymbol{i} is unmarked
the proponent has an 'answer' to any 'attack'

3.4 Semantics

$\operatorname{Dab}(\Delta)$ is a minimal Dab-consequence of Γ :
$\Gamma \vDash_{\text {LLL }} \operatorname{Dab}(\Delta)$ and, for all $\Delta^{\prime} \subset \Delta, \Gamma \not \forall_{\mathrm{LLL}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
where M is a LLL-model: $\boldsymbol{A b}(M)=\{A \in \Omega \mid M \models A\}$
$\operatorname{Dab}(\Delta)$ is a minimal Dab-consequence of Γ :
$\Gamma \vDash_{\text {LLL }} \operatorname{Dab}(\Delta)$ and, for all $\Delta^{\prime} \subset \Delta, \Gamma \nvdash_{\mathrm{LLL}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
where M is a LLL-model: $\boldsymbol{A b}(M)=\{A \in \Omega \mid M \models A\}$

Reliability

where $\operatorname{Dab}\left(\Delta_{1}\right), \operatorname{Dab}\left(\Delta_{2}\right), \ldots$ are the minimal Dab-consequences of Γ, $U(\Gamma)=\Delta_{1} \cup \Delta_{2} \cup \ldots$
$\operatorname{Dab}(\Delta)$ is a minimal Dab-consequence of Γ :
$\Gamma \vDash_{\text {LLL }} \operatorname{Dab}(\Delta)$ and, for all $\Delta^{\prime} \subset \Delta, \Gamma \nvdash_{\mathrm{LLL}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
where M is a LLL-model: $\boldsymbol{A b}(M)=\{A \in \Omega \mid M \models A\}$

Reliability

where $\operatorname{Dab}\left(\Delta_{1}\right), \operatorname{Dab}\left(\Delta_{2}\right), \ldots$ are the minimal Dab-consequences of Γ, $U(\Gamma)=\Delta_{1} \cup \Delta_{2} \cup \ldots$
a LLL-model M of Γ is reliable iff $\boldsymbol{A b}(\boldsymbol{M}) \subseteq U(\Gamma)$
$\operatorname{Dab}(\Delta)$ is a minimal Dab-consequence of Γ :
$\Gamma \vDash_{\text {LLL }} \operatorname{Dab}(\Delta)$ and, for all $\Delta^{\prime} \subset \Delta, \Gamma \nvdash_{\mathrm{LLL}} \operatorname{Dab}\left(\Delta^{\prime}\right)$
where M is a LLL-model: $\boldsymbol{A b}(M)=\{A \in \Omega \mid M \models A\}$

Reliability

where $\operatorname{Dab}\left(\Delta_{1}\right), \operatorname{Dab}\left(\Delta_{2}\right), \ldots$ are the minimal Dab-consequences of Γ, $U(\Gamma)=\Delta_{1} \cup \Delta_{2} \cup \ldots$
a LLL-model M of Γ is reliable iff $\boldsymbol{A b}(\boldsymbol{M}) \subseteq U(\Gamma)$
$\Gamma \vDash_{\mathrm{AL}} \boldsymbol{A}$ iff all reliable models of $\boldsymbol{\Gamma}$ verify \boldsymbol{A}

Minimal Abnormality
a LLL-model \boldsymbol{M} of $\boldsymbol{\Gamma}$ is minimally abnormal
iff
there is no LLL-model M^{\prime} of Γ for which $\boldsymbol{A b}\left(M^{\prime}\right) \subset A b(M)$

Minimal Abnormality

a LLL-model \boldsymbol{M} of $\boldsymbol{\Gamma}$ is minimally abnormal
iff
there is no LLL-model M^{\prime} of Γ for which $A b\left(M^{\prime}\right) \subset A b(M)$
$\Gamma \vDash_{\text {AL }} \boldsymbol{A}$ iff all minimally abnormal models of $\boldsymbol{\Gamma}$ verify \boldsymbol{A}

Abnormal Γ

Normal Γ
there are no AL-models, but only AL-models of some Γ
there are no AL-models, but only AL-models of some Γ
all LLL-models are AL-models of some Γ
there are no AL-models, but only AL-models of some Γ
all LLL-models are AL-models of some Γ
the AL-semantics selects some LLL-models of Γ as AL-models of Γ

[^0]3.5 Annotated Dynamic Proofs: Minimal Abnormality
rules (as for Reliability) and marking definition
rules (as for Reliability) and marking definition
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas derived on the condition \emptyset at stage s
$\Phi_{S}^{\circ}(\Gamma)$: the set of all sets that contain one member of each Δ_{i}
rules (as for Reliability) and marking definition
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas derived on the condition \emptyset at stage s
$\Phi_{s}^{\circ}(\Gamma)$: the set of all sets that contain one member of each Δ_{i}
$\Phi_{s}^{\star}(\Gamma)$: contains, for any $\varphi \in \Phi_{s}^{\circ}(\Gamma), C n_{\operatorname{LLL}}(\varphi) \cap \Omega$

3.5 Annotated Dynamic Proofs: Minimal Abnormality

rules (as for Reliability) and marking definition
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas derived on the condition \emptyset at stage s
$\Phi_{s}^{\circ}(\Gamma)$: the set of all sets that contain one member of each Δ_{i}
$\Phi_{s}^{\star}(\Gamma)$: contains, for any $\varphi \in \Phi_{s}^{\circ}(\Gamma), C n_{\mathrm{LLL}}(\varphi) \cap \Omega$
$\Phi_{s}(\Gamma): \varphi \in \Phi_{s}^{\star}(\Gamma)$ that are not proper supersets of a $\varphi^{\prime} \in \Phi_{s}^{\star}(\Gamma)$

3.5 Annotated Dynamic Proofs: Minimal Abnormality

rules (as for Reliability) and marking definition
where $\operatorname{Dab}\left(\Delta_{1}\right), \ldots, \operatorname{Dab}\left(\Delta_{n}\right)$ are the minimal Dab-formulas derived on the condition \emptyset at stage s
$\Phi_{s}^{\circ}(\Gamma)$: the set of all sets that contain one member of each Δ_{i}
$\Phi_{s}^{\star}(\Gamma)$: contains, for any $\varphi \in \Phi_{s}^{\circ}(\Gamma), C n_{\operatorname{LLL}}(\varphi) \cap \Omega$
$\Phi_{s}(\Gamma): \varphi \in \Phi_{s}^{\star}(\Gamma)$ that are not proper supersets of a $\varphi^{\prime} \in \Phi_{s}^{\star}(\Gamma)$

Definition

where \boldsymbol{A} is the formula and Δ is the condition of line i, line i is marked at stage s iff,
(i) there is no $\varphi \in \Phi_{s}(\Gamma)$ such that $\varphi \cap \Delta=\emptyset$, or
(ii) for some $\varphi \in \Phi_{s}(\Gamma)$, there is no line at which \boldsymbol{A} is derived on a condition Θ for which $\varphi \cap \Theta=\emptyset$

$$
\text { example: } \boldsymbol{\Gamma}=\{\sim \boldsymbol{p}, \sim \boldsymbol{q}, \boldsymbol{p} \vee \boldsymbol{q}, \boldsymbol{p} \vee \boldsymbol{r}, \boldsymbol{q} \vee s\}
$$

$\Gamma \vdash_{\text {ACLuN }^{m}} \boldsymbol{r} \vee s$
$\Gamma \nvdash^{A C L u N}{ }^{\text {r }} \boldsymbol{r} \vee s$
example: $\boldsymbol{\Gamma}=\{\sim \boldsymbol{p}, \sim \boldsymbol{q}, \boldsymbol{p} \vee \boldsymbol{q}, \boldsymbol{p} \vee \boldsymbol{r}, \boldsymbol{q} \vee \boldsymbol{s}\}$
$\Gamma \vdash^{\text {ACLuN }}{ }^{m} r \vee s$
$\Gamma \nvdash$ ACLuN $^{\text {r }} \boldsymbol{r} \vee s$

```
\vdots \vdots \vdots
- r}\vee\mp@code{s
- r
- (p\wedge~p)\vee(q\wedge~q)
```

$$
\begin{aligned}
& \{p \wedge \sim p\} \\
& \{q \wedge \sim q\} \\
& \emptyset
\end{aligned}
$$

3.6 Some Properties

Soundness: if $\Gamma \vdash_{\text {AL }} \boldsymbol{A}$ then $\Gamma \vDash_{\mathrm{AL}} \boldsymbol{A}$
Completeness: if $\boldsymbol{\Gamma} \vDash_{\mathrm{AL}} \boldsymbol{A}$ then $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$

3.6 Some Properties

Soundness: if $\Gamma \vdash_{\mathrm{AL}} \boldsymbol{A}$ then $\Gamma \vDash_{\mathrm{AL}} \boldsymbol{A}$
Completeness: if $\boldsymbol{\Gamma} \vDash_{\mathrm{AL}} \boldsymbol{A}$ then $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$
Derivability Adjustment Theorem:
$A \in C n_{\mathrm{ULL}}(\Gamma) \quad$ iff $\quad A \vee \operatorname{Dab}(\Delta) \in C n_{\mathrm{LLL}}(\Gamma)$ for some $\Delta \subset \Omega$.

3.6 Some Properties

Soundness: if $\Gamma \vdash_{\mathrm{AL}} \boldsymbol{A}$ then $\Gamma \vDash_{\mathrm{AL}} A$
Completeness: if $\boldsymbol{\Gamma} \vDash_{\mathrm{AL}} \boldsymbol{A}$ then $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$
Derivability Adjustment Theorem: $A \in C n_{\mathrm{ULL}}(\Gamma) \quad$ iff $\quad A \vee \operatorname{Dab}(\Delta) \in C n_{\mathrm{LLL}}(\Gamma)$ for some $\Delta \subset \Omega$. Reassurance: if $C n_{\text {LLL }}(\Gamma)$ is not trivial, then $C n_{\mathrm{AL}}(\Gamma)$ is not trivial (if Γ has LLL-models, then it has AL-models)

3.6 Some Properties

Soundness: if $\Gamma \vdash_{\mathrm{AL}} \boldsymbol{A}$ then $\Gamma \vDash_{\mathrm{AL}} \boldsymbol{A}$
Completeness: if $\boldsymbol{\Gamma} \vDash_{\mathrm{AL}} \boldsymbol{A}$ then $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$
Derivability Adjustment Theorem: $A \in C n_{\mathrm{ULL}}(\Gamma) \quad$ iff $\quad A \vee \operatorname{Dab}(\Delta) \in C n_{\mathrm{LLL}}(\Gamma)$ for some $\Delta \subset \Omega$. Reassurance: if $C n_{\mathrm{LLL}}(\Gamma)$ is not trivial, then $C n_{\mathrm{AL}}(\Gamma)$ is not trivial (if Γ has LLL-models, then it has AL-models)

Strong Reassurance: if a LLL-model M of Γ is not a AL-model of Γ, then $\boldsymbol{A b}\left(M^{\prime}\right) \subset \boldsymbol{A b}(M)$ for some AL-model M^{\prime} of Γ.

3.6 Some Properties

Soundness: if $\Gamma \vdash_{\mathrm{AL}} \boldsymbol{A}$ then $\Gamma \vDash_{\mathrm{AL}} A$
Completeness: if $\boldsymbol{\Gamma} \vDash_{\mathrm{AL}} \boldsymbol{A}$ then $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$
Derivability Adjustment Theorem: $A \in C n_{\mathrm{ULL}}(\Gamma) \quad$ iff $\quad A \vee \operatorname{Dab}(\Delta) \in C n_{\mathrm{LLL}}(\Gamma)$ for some $\Delta \subset \Omega$. Reassurance: if $C n_{\mathrm{LLL}}(\Gamma)$ is not trivial, then $C n_{\mathrm{AL}}(\Gamma)$ is not trivial (if Γ has LLL-models, then it has AL-models)

Strong Reassurance: if a LLL-model M of Γ is not a AL-model of Γ, then $A b\left(M^{\prime}\right) \subset A b(M)$ for some AL-model M^{\prime} of Γ.

Proof Invariance: if $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$, then every AL-proof from $\boldsymbol{\Gamma}$ can be extended in such a way that \boldsymbol{A} is finally derived in it.

3.6 Some Properties

Soundness: if $\Gamma \vdash_{\mathrm{AL}} \boldsymbol{A}$ then $\Gamma \vDash_{\mathrm{AL}} A$
Completeness: if $\boldsymbol{\Gamma} \vDash_{\mathrm{AL}} \boldsymbol{A}$ then $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$
Derivability Adjustment Theorem: $A \in C n_{\mathrm{ULL}}(\Gamma) \quad$ iff $\quad A \vee \operatorname{Dab}(\Delta) \in C n_{\mathrm{LLL}}(\Gamma)$ for some $\Delta \subset \Omega$.

Reassurance: if $C n_{\mathrm{LLL}}(\Gamma)$ is not trivial, then $C n_{\mathrm{AL}}(\Gamma)$ is not trivial (if Γ has LLL-models, then it has AL-models)

Strong Reassurance: if a LLL-model M of Γ is not a AL-model of Γ, then $A b\left(M^{\prime}\right) \subset A b(M)$ for some AL-model M^{\prime} of Γ.

Proof Invariance: if $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$, then every AL-proof from $\boldsymbol{\Gamma}$ can be extended in such a way that \boldsymbol{A} is finally derived in it.
$C n_{\mathrm{LLL}}(\Gamma) \subseteq C n_{\mathrm{AL}}(\Gamma) \subseteq C n_{\mathrm{ULL}}(\Gamma) \quad(\subset$ and $=$ where justifiable)

3.6 Some Properties

Soundness: if $\Gamma \vdash_{\mathrm{AL}} \boldsymbol{A}$ then $\Gamma \vDash_{\mathrm{AL}} A$
Completeness: if $\boldsymbol{\Gamma} \vDash_{\mathrm{AL}} \boldsymbol{A}$ then $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$
Derivability Adjustment Theorem:
$A \in C n_{\mathrm{ULL}}(\Gamma) \quad$ iff $\quad A \vee \operatorname{Dab}(\Delta) \in C n_{\mathrm{LLL}}(\Gamma)$ for some $\Delta \subset \Omega$.
Reassurance: if $C n_{\text {LLL }}(\Gamma)$ is not trivial, then $C n_{\mathrm{AL}}(\Gamma)$ is not trivial (if Γ has LLL-models, then it has AL-models)

Strong Reassurance: if a LLL-model M of Γ is not a AL-model of Γ, then $A b\left(M^{\prime}\right) \subset A b(M)$ for some AL-model M^{\prime} of Γ.

Proof Invariance: if $\boldsymbol{\Gamma} \vdash_{\mathrm{AL}} \boldsymbol{A}$, then every AL-proof from $\boldsymbol{\Gamma}$ can be extended in such a way that \boldsymbol{A} is finally derived in it.
$C n_{\mathrm{LLL}}(\Gamma) \subseteq C n_{\mathrm{AL}}(\Gamma) \subseteq C n_{\mathrm{ULL}}(\Gamma) \quad(\subset$ and $=$ where justifiable)

4 Combining Adaptive Logics

4.1 By Union
4.2 By Intersection and Union
4.3 Sequential Combination

4.1 By Union

required:
combined adaptive logics share lower limit and strategy

4.1 By Union

required:
combined adaptive logics share lower limit and strategy

$$
\Omega=\Omega_{1} \cup \Omega_{2}
$$

4.1 By Union

required:
combined adaptive logics share lower limit and strategy
$\Omega=\Omega_{1} \cup \Omega_{2}$
example: inductive generalization + abduction

4.1 By Union

required:
combined adaptive logics share lower limit and strategy
$\Omega=\Omega_{1} \cup \Omega_{2}$
example: inductive generalization + abduction
example: any adaptive Iogic + plausibility extension handling inconsistency + plausibility extension inductive generalization + plausibility extension

4.2 By Intersection and Union

required:

- common strategy
- intersection of lower limits is a (compact and monotonic) logic

4.2 By Intersection and Union

required:

- common strategy
- intersection of lower limits is a (compact and monotonic) logic

LLL: intersection of the lower limit Iogics

4.2 By Intersection and Union

required:

- common strategy
- intersection of lower limits is a (compact and monotonic) logic

LLL: intersection of the lower limit logics

$$
\Omega=\Omega_{1} \cup \Omega_{2}
$$

4.2 By Intersection and Union

required:

- common strategy
- intersection of lower limits is a (compact and monotonic) logic

LLL: intersection of the lower limit logics

$$
\Omega=\Omega_{1} \cup \Omega_{2}
$$

example: gluts/gaps with respect to several logical symbols

4.2 By Intersection and Union

required:

- common strategy
- intersection of lower limits is a (compact and monotonic) logic

LLL: intersection of the lower limit logics
$\Omega=\Omega_{1} \cup \Omega_{2}$
example: gluts/gaps with respect to several logical symbols
note: combination of all gluts and gaps with ambiguity (zero logic)

4.3 Sequential Combination

required:
apparently only that the combination is meaningful (e.g. that it does not lead to triviality)

- lower limit logic: T
- set of abnormalities: $\Omega^{i}=\left\{\diamond^{i} A \wedge \sim A \mid A \in \mathcal{W}\right\}$ (abnormality is falsehood of an expectancy)
- strategy: Reliability
upper limit logic: Triv $=\mathbf{T}+\diamond \boldsymbol{A} \supset \boldsymbol{A}$
$\diamond^{0} A: \quad A$
$\diamond^{1} A: \quad \diamond A$
$\diamond^{2} A: \quad \diamond \diamond A$

$$
\begin{equation*}
\text { we want } \quad C n_{\operatorname{Pref}}(\Gamma)=\ldots C n_{\mathrm{AT}^{3}}\left(C n_{\mathrm{AT}^{2}}\left(C n_{\mathrm{AT}^{1}}(\Gamma)\right)\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { we want } \quad C n_{\mathrm{Pref}}(\Gamma)=\ldots C n_{\mathrm{AT}^{3}}\left(C n_{\mathrm{AT}^{2}}\left(C n_{\mathrm{AT}^{1}}(\Gamma)\right)\right) \tag{1}
\end{equation*}
$$

seems superposition of supertasks
we want $\quad C n_{\operatorname{Pref}}(\Gamma)=\ldots C n_{\mathrm{AT}^{3}}\left(C n_{\mathrm{AT}^{2}}\left(C n_{\mathrm{AT}^{1}}(\Gamma)\right)\right)$
seems superposition of supertasks

Proofs: (skipping a couple of details)
at every stage:

- apply rules of $\mathbf{A T}^{1}, \mathbf{A T}^{2}, \ldots$ in any order
- Marking definition: mark first for $\mathbf{A T}^{1}$, next for $\mathbf{A T}^{2}, \ldots$ up to the highest \diamond^{i} that occurs in the proof
we want $\quad C n_{\text {Pref }}(\Gamma)=\ldots C n_{\mathrm{AT}^{3}}\left(C n_{\mathrm{AT}^{2}}\left(C n_{\mathrm{AT}^{1}}(\Gamma)\right)\right)$
seems superposition of supertasks

Proofs: (skipping a couple of details)
at every stage:

- apply rules of $\mathbf{A T}^{\mathbf{1}}, \mathbf{A T}^{\mathbf{2}}, \ldots$ in any order
- Marking definition: mark first for AT 1, next for AT 2, ... up to the highest \diamond^{i} that occurs in the proof
finite stage may contain applications of every AT^{i}
we want $\quad C n_{\text {Pref }(\Gamma)=\ldots C n_{\mathrm{AT}^{3}}\left(C n_{\mathrm{AT}^{2}}\left(C n_{\mathrm{AT}^{1}}(\Gamma)\right)\right), ~(\Gamma)}$
seems superposition of supertasks

Proofs: (skipping a couple of details)
at every stage:

- apply rules of $\mathbf{A T}^{\mathbf{1}}, \mathbf{A T}^{\mathbf{2}}, \ldots$ in any order
- Marking definition: mark first for AT 1, next for AT 2, ... up to the highest \diamond^{i} that occurs in the proof
finite stage may contain applications of every $\mathbf{A T}^{i}$

> Notwithstanding (1), some criteria warrant final derivability after finitely many steps.

```
other examples
handling (different kinds) of background knowledge
    +
inductive generalization
```

```
other examples
handling (different kinds) of background knowledge
    +
inductive generalization
```

diagnosis + inductive generalization

```
other examples
handling (different kinds) of background knowledge
    +
inductive generalization
diagnosis + inductive generalization
handling inconsistency + abduction
    (abduction from inconsistent knowledge)
```


other examples

handling (different kinds) of background knowledge $+$
inductive generalization
diagnosis + inductive generalization
handling inconsistency + abduction (abduction from inconsistent knowledge)
handling inconsistency + compatibility
paraconsistent compatibility pragmatic truth in terms of partial structures (da Costa et al.)

other examples

handling (different kinds) of background knowledge $+$
inductive generalization
diagnosis + inductive generalization
handling inconsistency + abduction (abduction from inconsistent knowledge)
handling inconsistency + compatibility paraconsistent compatibility pragmatic truth in terms of partial structures (da Costa et al.)
handling inconsistency + question evocation

other examples

```
handling (different kinds) of background knowledge
    +
inductive generalization
diagnosis + inductive generalization
handling inconsistency + abduction
    (abduction from inconsistent knowledge)
```

handling inconsistency + compatibility
paraconsistent compatibility
pragmatic truth in terms of partial structures (da Costa et al.)
handling inconsistency + question evocation

5 Decidability and Decisions

5.1 The Challenge
5.2 Tableaux
5.3 Procedural Criterion
5.4 What If No Criterion Applies

5.1 The Challenge

the reasoning patterns explicated by adaptive logics

- are undecidable
- there is no positive test for them

5.1 The Challenge

the reasoning patterns explicated by adaptive logics

- are undecidable
- there is no positive test for them
same should obtain for the explications

5.1 The Challenge

the reasoning patterns explicated by adaptive logics

- are undecidable
- there is no positive test for them
same should obtain for the explications
note: not all are non-monotonic
(example: Rescher's Weak Consequence Relation)

5.1 The Challenge

the reasoning patterns explicated by adaptive logics

- are undecidable
- there is no positive test for them
same should obtain for the explications
note: not all are non-monotonic (example: Rescher's Weak Consequence Relation)
note: some decidable inference relations can be characterized by adaptive logics (example: \mathbf{R}_{\rightarrow})
given that there is no positive test for the inference relation
(1) one may still search for criteria for final derivability
given that there is no positive test for the inference relation
(1) one may still search for criteria for final derivability
- the block semantics
given that there is no positive test for the inference relation
(1) one may still search for criteria for final derivability
- the block semantics
- tableau methods
given that there is no positive test for the inference relation
(1) one may still search for criteria for final derivability
- the block semantics
- tableau methods
- procedural criterion
given that there is no positive test for the inference relation
(1) one may still search for criteria for final derivability
- the block semantics
- tableau methods
- procedural criterion
(2) What if no criterion applies?

Can one sensibly decide on the basis of derivability at a stage?

5.2 Tableaux

idea: construct tableau for $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{LLL}} \boldsymbol{B}$ as follows

- start by writing $\cdot \boldsymbol{T} \boldsymbol{A}_{1}, \ldots, \cdot \boldsymbol{T} \boldsymbol{A}_{n}, \boldsymbol{F B}$

5.2 Tableaux

idea: construct tableau for $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\text {LLL }} \boldsymbol{B}$ as follows

- start by writing $\cdot \boldsymbol{T} \boldsymbol{A}_{1}, \ldots, \cdot \boldsymbol{T} \boldsymbol{A}_{\boldsymbol{n}}, \boldsymbol{F} \boldsymbol{B}$
- apply rules: descendants of labelled formulas are labelled
rules for negation

$$
\frac{F \sim A}{T A} \quad \frac{T \sim A}{T A \mid F A}
$$

idea: construct tableau for $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{LLL}} \boldsymbol{B}$ as follows

- start by writing $\cdot \boldsymbol{T} \boldsymbol{A}_{1}, \ldots, \cdot \boldsymbol{T} \boldsymbol{A}_{n}, \boldsymbol{F B}$
- apply rules: descendants of labelled formulas are labelled
- each branch: set of abnormalities, set of labelled abnormalities
abnormality: [•] \boldsymbol{A} and $[\cdot] \boldsymbol{T} \sim \boldsymbol{A}$ (no, one or two labels)
labelled abnormality: $\boldsymbol{T} \boldsymbol{A}$ and $\cdot \boldsymbol{T} \sim \boldsymbol{A}$
idea: construct tableau for $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{LLL}} \boldsymbol{B}$ as follows
- start by writing $\cdot \boldsymbol{T} \boldsymbol{A}_{1}, \ldots, \cdot \boldsymbol{T} \boldsymbol{A}_{n}, \boldsymbol{F B}$
- apply rules: descendants of labelled formulas are labelled
- each branch: set of abnormalities, set of labelled abnormalities
- mark the unsuitable branches (in function of the strategy)

Minimal abnormality: mark branch iff its set of abnormalities is a proper subset of the set of labelled abnormalities of another branch
idea: construct tableau for $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{LLL}} \boldsymbol{B}$ as follows

- start by writing $\cdot \boldsymbol{T} \boldsymbol{A}_{1}, \ldots, \cdot \boldsymbol{T} \boldsymbol{A}_{n}, \boldsymbol{F B}$
- apply rules: descendants of labelled formulas are labelled
- each branch: set of abnormalities, set of labelled abnormalities
- mark the unsuitable branches (in function of the strategy)
- in the predicative case: apply finishing procedure
idea: construct tableau for $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash_{\mathrm{LLL}} \boldsymbol{B}$ as follows
- start by writing $\cdot \boldsymbol{T} \boldsymbol{A}_{1}, \ldots, \cdot \boldsymbol{T} \boldsymbol{A}_{n}, \boldsymbol{F B}$
- apply rules: descendants of labelled formulas are labelled
- each branch: set of abnormalities, set of labelled abnormalities
- mark the unsuitable branches (in function of the strategy)
- in the predicative case: apply finishing procedure
- tableau closes iff all branches are marked or closed
branch closed: [•] $\boldsymbol{T} \boldsymbol{A}$ and $[\cdot] \boldsymbol{F} \boldsymbol{A}$
some elementary illustrations:

some elementary illustrations:

some elementary illustrations:

$$
\begin{aligned}
& \cdot T p \\
& \cdot T \sim p \\
& F \sim(q \wedge \sim q) \\
& T q \wedge \sim q \\
& T q \\
& T \sim q \\
& \boldsymbol{T q} \boldsymbol{F q}
\end{aligned}
$$

some elementary illustrations:

$$
\begin{aligned}
& \text {-Tp } \\
& \cdot T \sim p \\
& F \sim(q \wedge \sim q) \\
& T q \wedge \sim q \\
& T q \\
& T \sim q \\
& \begin{array}{c|c}
\boldsymbol{T q} & \boldsymbol{F q} \\
\checkmark & \checkmark \\
& \times
\end{array}
\end{aligned}
$$

some elementary illustrations:

$$
\begin{aligned}
& \text {-Tp } \\
& \cdot T \sim p \\
& F \sim(q \wedge \sim q) \\
& T q \wedge \sim q \\
& T q \\
& T \sim q \\
& \begin{array}{c|c}
\boldsymbol{T q} & \boldsymbol{F q} \\
\checkmark & \checkmark \\
& \times
\end{array}
\end{aligned}
$$

5.3 Procedural Criterion

prospective proofs

- contain most of the proof heuristics
- enable one to define a procedure

5.3 Procedural Criterion

prospective proofs

- contain most of the proof heuristics
- enable one to define a procedure
applied to $\mathbf{A C L u N}{ }^{r}$ and can be generalized

5.3 Procedural Criterion

prospective proofs

- contain most of the proof heuristics
- enable one to define a procedure
applied to $\mathbf{A C L u N}{ }^{r}$ and can be generalized
if the (three stage) procedure is applied to $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash \boldsymbol{B}$ and stops, we can read off whether the expression is true or false

5.3 Procedural Criterion

prospective proofs

- contain most of the proof heuristics
- enable one to define a procedure
applied to $\mathbf{A C L u N}{ }^{r}$ and can be generalized
if the (three stage) procedure is applied to $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash \boldsymbol{B}$ and stops, we can read off whether the expression is true or false
propositional examples:
$\sim q, p \vee q, \sim p \nvdash p$
$p \vee q, \sim q, p \vee r, \sim r, p \vee s, \sim s, q \vee r \vdash p$
pdp2 80
pdp2 81

5.3 Procedural Criterion

prospective proofs

- contain most of the proof heuristics
- enable one to define a procedure
applied to $\mathbf{A C L u N}{ }^{r}$ and can be generalized
if the (three stage) procedure is applied to $\boldsymbol{A}_{\boldsymbol{1}}, \ldots, \boldsymbol{A}_{\boldsymbol{n}} \vdash \boldsymbol{B}$ and stops, we can read off whether the expression is true or false
propositional examples:
$\sim \boldsymbol{q}, \boldsymbol{p} \vee \boldsymbol{q}, \sim \boldsymbol{p} \nvdash \boldsymbol{p}$
$\boldsymbol{p} \vee q, \sim q, p \vee r, \sim r, p \vee s, \sim s, q \vee r \vdash p$
pdp2 80
pdp2 81
decision procedure at propositional level criteria at predicative level

5.4 What If No Criterion Applies

Given the presupposition that abnormalities are false until and unless proven otherwise, the derivability of \boldsymbol{A} on a condition $\boldsymbol{\Delta}$ of which no member is shown to be unreliable is a good reason to consider \boldsymbol{A} as derivable.

5.4 What If No Criterion Applies

Given the presupposition that abnormalities are false until and unless proven otherwise, the derivability of \boldsymbol{A} on a condition $\boldsymbol{\Delta}$ of which no member is shown to be unreliable is a good reason to consider \boldsymbol{A} as derivable.

The block analysis shows:
as the proof proceeds, one may obtain more insights in the premises (and cannot lose insights in the premises)

5.4 What If No Criterion Applies

Given the presupposition that abnormalities are false until and unless proven otherwise, the derivability of \boldsymbol{A} on a condition $\boldsymbol{\Delta}$ of which no member is shown to be unreliable is a good reason to consider \boldsymbol{A} as derivable.

The block analysis shows:
as the proof proceeds, one may obtain more insights in the premises (and cannot lose insights in the premises)

- derivability at a stage converges towards final derivability

5.4 What If No Criterion Applies

Given the presupposition that abnormalities are false until and unless proven otherwise, the derivability of \boldsymbol{A} on a condition $\boldsymbol{\Delta}$ of which no member is shown to be unreliable is a good reason to consider \boldsymbol{A} as derivable.

The block analysis shows:
as the proof proceeds, one may obtain more insights in the premises (and cannot lose insights in the premises)

- derivability at a stage converges towards final derivability
- economical considerations
(cost of proceeding, possible cost of wrong decision, ...)

6 Further examples and applications

6.1 Corrective
6.2 Ampliative (+ ampliative and corrective)
6.3 Incorporation
6.4 Applications

- $A C L u N^{r}$ and $A C L u N^{m}$ (negation gluts)
- other paraconsistent logics as LLL, including ANA
- negation gaps
- gluts/gaps for all logical symbols
- ambiguity adaptive logics
- adaptive zero logic
- corrective deontic logics
- prioritized ial
- $A C L u N^{r}$ and $A C L u N^{m}$ (negation gluts)
- other paraconsistent logics as LLL, including ANA
- negation gaps
- gluts/gaps for all logical symbols
- ambiguity adaptive logics
- adaptive zero Iogic
- corrective deontic logics
- prioritized ial
- . .
- $A C L u N^{r}$ and $A C L u N^{m}$ (negation gluts)
- other paraconsistent logics as LLL, including ANA
- negation gaps
- gluts/gaps for all logical symbols
- ambiguity adaptive logics
- adaptive zero logic
- corrective deontic logics
- prioritized ial
- . .
- $A C L u N^{r}$ and $A C L u N^{m}$ (negation gluts)
- other paraconsistent logics as LLL, including ANA
- negation gaps
- gluts/gaps for all logical symbols
- ambiguity adaptive Iogics
- adaptive zero Iogic
- corrective deontic logics
- prioritized ial
- $A C L u N^{r}$ and $A C L u N^{m}$ (negation gluts)
- other paraconsistent logics as LLL, including ANA
- negation gaps
- gluts/gaps for all logical symbols
- ambiguity adaptive logics
- adaptive zero logic
- corrective deontic logics
- prioritized ial

6.2 Ampliative (+ ampliative and corrective)

- compatibility (characterization)
- compatibility with inconsistent premises
- diagnosis
- prioritized adaptive logics
- inductive generalization
- abduction
- inference to the best explanation
- analogies, metaphors
- erotetic evocation and erotetic inference
- discussions

6.2 Ampliative (+ ampliative and corrective)

- compatibility (characterization)
- compatibility with inconsistent premises
- diagnosis
- prioritized adaptive Iogics
- inductive generalization
- abduction
- inference to the best explanation
- analogies, metaphors
- erotetic evocation and erotetic inference
- discussions
- . .
- compatibility (characterization)
- compatibility with inconsistent premises
- diagnosis
- prioritized adaptive logics
- inductive generalization
- abduction
- inference to the best explanation
- analogies, metaphors
- erotetic evocation and erotetic inference
- discussions
- . . .

6.2 Ampliative (+ ampliative and corrective)

- compatibility (characterization)
- compatibility with inconsistent premises
- diagnosis
- prioritized adaptive Iogics
- inductive generalization
- abduction
- inference to the best explanation
- analogies, metaphors
- erotetic evocation and erotetic inference
- discussions
- . .

6.2 Ampliative (+ ampliative and corrective)

- compatibility (characterization)
- compatibility with inconsistent premises
- diagnosis
- prioritized adaptive logics
- inductive generalization
- abduction
- inference to the best explanation
- analogies, metaphors
- erotetic evocation and erotetic inference
- discussions
- flat Rescher-Manor consequence relations (+ extensions)
- partial structures and pragmatic truth
- prioritized Rescher-Manor consequence relations
- circumscription, defaults, negation as failure, ...
- dynamic characterization of $\mathrm{R} \rightarrow$
- signed systems (Besnard \& C°)
- flat Rescher-Manor consequence relations (+ extensions)
- partial structures and pragmatic truth
- prioritized Rescher-Manor consequence relations
- circumscription, defaults, negation as failure, ...
- dynamic characterization of $\mathrm{R} \rightarrow$
- signed systems (Besnard \& C°)
- flat Rescher-Manor consequence relations (+ extensions)
- partial structures and pragmatic truth
- prioritized Rescher-Manor consequence relations
- circumscription, defaults, negation as failure, ...
- dynamic characterization of $\mathrm{R} \rightarrow$
- signed systems (Besnard \& C°)
- flat Rescher-Manor consequence relations (+ extensions)
- partial structures and pragmatic truth
- prioritized Rescher-Manor consequence relations
- circumscription, defaults, negation as failure, ...
- dynamic characterization of $\mathrm{R} \rightarrow$
- signed systems (Besnard \& C°)
- flat Rescher-Manor consequence relations (+ extensions)
- partial structures and pragmatic truth
- prioritized Rescher-Manor consequence relations
- circumscription, defaults, negation as failure, ...
- dynamic characterization of $\mathrm{R} \rightarrow$
- signed systems (Besnard \& C°)
- scientific discovery and creativity
- scientific explanation
- diagnosis
- positions defended / agreed upon in discussions
- changing positions in discussions
- belief revision in inconsistent contexts
- inconsistent arithmetic
- inductive statistical explanation
- tentatively eliminating abnormalities
- Gricean maximes
- scientific discovery and creativity
- scientific explanation
- diagnosis
- positions defended / agreed upon in discussions
- changing positions in discussions
- belief revision in inconsistent contexts
- inconsistent arithmetic
- inductive statistical explanation
- tentatively eliminating abnormalities
- Gricean maximes
- . . .
- scientific discovery and creativity
- scientific explanation
- diagnosis
- positions defended / agreed upon in discussions
- changing positions in discussions
- belief revision in inconsistent contexts
- inconsistent arithmetic
- inductive statistical explanation
- tentatively eliminating abnormalities
- Gricean maximes
- . . .
- scientific discovery and creativity
- scientific explanation
- diagnosis
- positions defended / agreed upon in discussions
- changing positions in discussions
- belief revision in inconsistent contexts
- inconsistent arithmetic
- inductive statistical explanation
- tentatively eliminating abnormalities
- Gricean maximes
- . . .
- scientific discovery and creativity
- scientific explanation
- diagnosis
- positions defended / agreed upon in discussions
- changing positions in discussions
- belief revision in inconsistent contexts
- inconsistent arithmetic
- inductive statistical explanation
- tentatively eliminating abnormalities
- Gricean maximes
- . . .
- scientific discovery and creativity
- scientific explanation
- diagnosis
- positions defended / agreed upon in discussions
- changing positions in discussions
- belief revision in inconsistent contexts
- inconsistent arithmetic
- inductive statistical explanation
- tentatively eliminating abnormalities
- Gricean maximes

[^0]: 3.4

