
Adaptive Logics

Handling Dynamic Reasoning

Diderik Batens Joke Meheus

Centre for Logic and Philosophy of Science

Ghent University, Belgium

{diderik.batens,joke.meheus}@ugent.be
http://logica.ugent.be/dirk/

http://logica.ugent.be/joke/

http://logica.ugent.be/centrum/writings/

http://logica.ugent.be/adlog/

H



CONTENTS

One

1 Dynamic Reasoning Patterns

2 Inconsistency-Adaptive Logics

Two

3 The Standard Format

Three

4 Combining Adaptive Logics

5 Decidability and Decisions

6 Further examples and applications



1 Dynamic reasoning patterns

1.1 The problem

1.2 Example 1: Process of explanation

1.3 Example 2: (Classical) Compatibility

1.4 Example 3: Inductive generalization

1.5 Example 4: Erotetic inferences

1.6 Some further examples

1.7 Adaptive logics and dynamic proof theories

1 0



1.1 The Problem H

many reasoning processes in the sciences (and elsewhere) display

an external dynamics

non-monotonic

an internal dynamics

revise conclusions as insights in premises grow

⇑ absence of positive test (at predicative level)

Problem: gain technically sound control on the reasoning processes
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1.2 Example 1: Process of explanation H

given:

 explanandum E

theory T

find: initial condition I

Two different steps

· find potential initial conditions

· establish one of them (other theories)

H



Six conditions (Hintikka–Halonen) H

T and I form an explanation of E

iff T, I ` E and

(i) T and E: no common ind. cons.

(ii) I and E: no common predicates

(iii) 0CL ∼I I not inconsistent

(iv) T 0CL E E not implied by T alone ∗
(v) I 0CL E E not implied by I alone

(vi) T 0CL ∼I T not falsified by I ∗

Comments

no positive test for (iv) and (vi)

irrelevant predicates: I[a] ∧ I′[a]
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1.3 Example 2: (Classical) Compatibility H

given: a (consistent) set Γ

find: those A that (taken separately) do not make Γ inconsistent

plays a central role in:

partial structures approach of da Costa and associates

belief revision

ampliative reasoning

extending a theory

. . .

A is compatible with Γ iff Γ 0CL ∼A (no positive test)

note: paraconsistent compatibility (?!)
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1.4 Inductive generalization H

given:

 a set of data Γ and

zero or more background theories

find: the suitable generalizations

find: (generalization: ∀A with A purely functional)

natural restriction:

the generalizations should be jointly compatible with Γ

⇓

only those generalizations ∀Ai derivable for which

no ‘minimal’ disjunction ∼∀A1 ∨ . . . ∨ ∼∀Ai ∨ . . . ∨ ∼∀An (n ≥ 1)

is CL-derivable from Γ
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1.5 Erotetic inferences H

given:

 a set of declarative sentences Γ and/or

an initial question Q

find: the questions that ‘arise’ from Γ and/or Q

question evocation (Andrzej Wísniewski):

a question Q is evoked by a set of declarative sentences Γ iff

(i) Γ `
∨

(dQ) (Q is sound with respect to Γ)

(ii) Γ 0 A, for any A ∈ dQ (Q is informative with respect to Γ)

erotetic impliation (Andrzej Wísniewski)
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1.6 Some further examples H

· interpret an inconsistent theory as consistently as possible

· inductive prediction

· interpreting a person’s position during an ongoing discussion

· all reasoning that involves defaults (or more or less preferred premises)

· diagnostic reasoning

· handling preferred sets of premises

. . .
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1.7 Adaptive logics and dynamic proof theories H

no positive test for Γ ` A

` ↙ ↘ reasoning

adaptive logic internal dynamics

↑ explicates

dynamic proof theory
of the adaptive logic

What is an adaptive logic?

What is a dynamic proof theory?
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2 Inconsistency-Adaptive Logics

2.1 An Application Type

2.2 Going Paraconsistent

2.3 Going Adaptive: Dynamic Proofs

2.4 Going Adaptive: Semantics

2.5 Strategies
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2.1 An Application Type H

the original problem:

T , intended as consistent, turns out to be inconsistent.

reason from T in order to find consistent replacement.

interpret T ‘as consistently as possible’

= adapt to the specific inconsistencies of T

examples: Frege’s set theory, thermodynamics around 1840, . . .

cannot be interpreted in terms of CL: triviality

interpret in terms of paraconsistent logic?
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2.2 Going Paraconsistent H

the basic paraconsistent logic CLuN

1 retain full positive logic

if A1, . . . , An `CL B and no negation occurs in A1, . . . , An or B

then A1, . . . , An `CLuN B

2 retain Excluded Middle: A ∨ ∼A (or (A ⊃ ∼A) ⊃ ∼A)

notes:

Replacement of Equivalents not generally valid (not valid in scope of ∼)

Replacement of Identicals not generally valid (not valid in scope of ∼)

What is lost?

H



DS: A ∨ B
∼A
B

classical semantic reasoning for DS:

A ∨ B is true, so A is true or B is true

∼A is true, so A is false

B is true

paraconsistent semantic reasoning for DS:

A ∨ B is true, so A is true or B is true

∼A is true (but A may be true together with ∼A)

B may be true as well as false

paraconsistent

∼A A ∨ B A B
1 1 0 1
1 1 1 1 possible
1 1 1 0 possible

H



note:

DS and many other rules (MT, RAA, . . . )

are invalid in CLuN

adding them to CLuN results in CL

other rules

are invalid in CLuN

adding them to CLuN results in a (richer) paraconsistent logic

examples: ∼∼A / A, de Morgan, . . .

H



interpreting a premise set paraconsistently delivers

a sensible (= non-trivial) interpretation

not an interpretation that is as consistent as possible

simplistic example: Γ = {p, q, ∼p ∨ r, ∼q ∨ s, ∼q}

Γ 0CLuN s and Γ 0CLuN r

one wants to consider a formula of the form A ∧ ∼A as false,

unless and until proven otherwise

(= unless the premises do not permit so)

Γ requires that q ∧ ∼q is true, but not that p ∧ ∼p is true

if Γ is true and p ∧ ∼p is false, r is true !

H



put differently:

· the theory was intended to be consistent, but turned out inconsistent

· one searches for a consistent replacement of ‘the theory’

‘the theory’

=

‘the theory in its full richness,

except for the pernicious consequences of its inconsistency’

put differently:

the theory, interpreted as consistently as possible

= consider inconsistencies as false,

except where the theory prevents so

Can this be explicated formally, and how?
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2.3 Going Adaptive: Dynamic Proofs H

simplistic example: Γ = {p, q, ∼p ∨ r, ∼q ∨ s, ∼q}

1 p Prem ∅
2 q Prem ∅
3 ∼p ∨ r Prem ∅
4 ∼q ∨ s Prem ∅
5 ∼q Prem ∅
6 r 1, 3; RC {p ∧ ∼p}
7 s 2, 4; RC {q ∧ ∼q} X
8 q ∧ ∼q 2, 5; RU ∅

nothing interesting happens when the proof is continued

no mark will be removed or added

H



Can marked lines become unmarked? H

1 (p ∧ q) ∧ t PREM ∅
2 ∼p ∨ r PREM ∅
3 ∼q ∨ s PREM ∅
4 ∼p ∨ ∼q PREM ∅
5 t ⊃ ∼p PREM ∅



Can marked lines become unmarked? H

1 (p ∧ q) ∧ t PREM ∅
2 ∼p ∨ r PREM ∅
3 ∼q ∨ s PREM ∅
4 ∼p ∨ ∼q PREM ∅
5 t ⊃ ∼p PREM ∅
6 r 1, 2; RC {p ∧ ∼p}
7 s 1, 3; RC {q ∧ ∼q}



Can marked lines become unmarked? H

1 (p ∧ q) ∧ t PREM ∅
2 ∼p ∨ r PREM ∅
3 ∼q ∨ s PREM ∅
4 ∼p ∨ ∼q PREM ∅
5 t ⊃ ∼p PREM ∅
6 r 1, 2; RC {p ∧ ∼p}

√

7 s 1, 3; RC {q ∧ ∼q}
√

8 (p ∧ ∼p) ∨ (q ∧ ∼q) 1, 4; RU ∅



Can marked lines become unmarked? H

1 (p ∧ q) ∧ t PREM ∅
2 ∼p ∨ r PREM ∅
3 ∼q ∨ s PREM ∅
4 ∼p ∨ ∼q PREM ∅
5 t ⊃ ∼p PREM ∅
6 r 1, 2; RC {p ∧ ∼p}

√

7 s 1, 3; RC {q ∧ ∼q}
8 (p ∧ ∼p) ∨ (q ∧ ∼q) 1, 4; RU ∅
9 p ∧ ∼p 1, 5; RU ∅

nothing interesting happens when the proof is continued

no mark will be removed or added

H



Making marking precise

the dynamic proofs need to explicate the dynamic reasoning

at the level of the proofs, the dynamics needs to be controlled

· the conditions

· the marking definition

Which lines are marked?

H



Which lines are marked?

Dab-formula: disjunction of inconsistencies, Dab(∆)

minimal Dab-formula at stage s:

at stage s:

Dab(∆) derived on the empty condition

for every ∆′ ⊂ ∆, Dab(∆′) not derived on the empty condition

where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas at stage s,

Us(Γ) = ∆1 ∪ . . . ∪ ∆n

where Θ is the condition of line i, line i is marked iff Θ ∩ Us(Γ) 6= ∅

H



Final derivability

derivability seems to be unstable: it changes from stage to stage

next to derivability at a stage,

one wants a stable notion of derivability: final derivability: Γ `ACLuNr A

idea behind final derivability:

A is derived at an unmarked line i

and

the proof is stable with respect to i

m

line i will not be marked in any extension of the proof
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2.4 Going Adaptive: Semantics H

consider the CLuN-models of the premise set Γ

Dab(∆) is a minimal Dab-consequence of Γ:

Γ �CLuN Dab(∆) and for all ∆′ ⊂ ∆, Γ 2CLuN Dab(∆′)

where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-consequences of Γ,

U(Γ) = ∆1 ∪ . . . ∪ ∆n

Ab(M) = {∃(A ∧ ∼A) | M |= ∃(A ∧ ∼A)}

a CLuN-model M of Γ is reliable iff Ab(M) ⊆ U(Γ)

Γ �ACLuNr A iff all reliable models of Γ verify A

it is provable that Γ `ACLuNr A iff Γ �ACLuNr A
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2.5 Strategies H

naive approach:

Simple strategy: take A ∧ ∼A to be false, unless Γ `CLuN A ∧ ∼A

the Simple strategy is inadequate (in this case) because, for some Γ,

Dab(∆) is a minimal Dab-consequence of Γ and ∆ is not a singleton.

before, we used the Reliability strategy

there are other strategies, each suitable for specific applications
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3 The Standard Format

3.1 The Problem

3.2 The Format

3.3 Annotated Dynamic Proofs: Reliability

3.4 Semantics

3.5 Annotated Dynamic Proofs: Minimal Abnormality

3.6 Some Properties
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3.1 The Problem H

many adaptive logics seem to have a common structure

others can be given this structure under a translation

the structure is central for the metatheoretic proofs

whence the plan:

· describe the structure: the SF (standard format)

· define the proof theory and semantics from the SF

· prove as many properties as possible by relying on the SF only
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3.2 The Format H

· lower limit logic

monotonic and compact logic

· set of abnormalities Ω:

characterized by a (possibly restricted) logical form

· strategy :

Reliability, Minimal Abnormality, . . .

upper limit logic:

ULL = LLL + axiom/rule that trivializes abnormalities

semantically: the LLL-models that verify no abnormality

flip-flop

H



Example 1: ACLuNr H
niets

· lower limit logic: CLuN

niets

· set of abnormalities: Ω = {∃(A ∧ ∼A) | A ∈ F}
niets

· strategy : Reliability

niets

upper limit logic: CL = CLuN + (A ∧ ∼A) ⊃ B

semantically: the CLuN-models that verify no inconsistency

H



Example 2: ACLuNm H
niets

· lower limit logic: CLuN

niets

· set of abnormalities: Ω = {∃(A ∧ ∼A) | A ∈ F}
niets

· strategy : Minimal Abnormality

niets

upper limit logic: CL = CLuN + (A ∧ ∼A) ⊃ B

semantically: the CLuN-models that verify no inconsistency

H



Example 3: ILm H
niets

· lower limit logic: CL

niets

· set of abnormalities: Ω = {∃A ∧ ∃∼A | A ∈ F◦}
niets

· strategy : Minimal Abnormality

niets

upper limit logic: UCL = CL + ∃αA(α) ⊃ ∀αA(α)

semantically: the CL-models that verify no abnormality (are uniform)

H



Example 4: AT1 m (extension with plausible statements) H
niets

· lower limit logic: T (a certain predicative version)

niets

· set of abnormalities: Ω = {♦A ∧ ∼A | A ∈ Wp}
niets

· strategy : Minimal Abnormality

niets

upper limit logic: Triv = T + ♦A ⊃ A

semantically: T-models that verify no abnormality (nothing contingent)

(includes the one world models)

H



the SF provides AL with:

· a dynamic proof theory

· a semantics

· most of the metatheory
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3.3 Annotated Dynamic Proofs: Reliability H
rules of inference and marking definition

a line consists of

· a line number

· a formula

· a justification (line numbers + rule)

· a condition (finite subset of Ω)

for all adaptive logics of the described kind:

A is derivable on the condition ∆ (in the dynamic proof)

iff

A ∨ Dab(∆) is derivable (on the condition ∅) (in the dynamic proof)

iff

Γ `LLL A ∨ Dab(∆)

H



Rules of inference (depend on LLL and Ω, not on the strategy) H

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1
. . . . . .
An ∆n
B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An `LLL B ∨ Dab(Θ) A1 ∆1
. . . . . .
An ∆n
B ∆1 ∪ . . . ∪ ∆n ∪ Θ

H



Marking Definition for Reliability H

where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas derived

on the condition ∅ at stage s, Us(Γ) = ∆1 ∪ . . . ∪ ∆n

Definition

where ∆ is the condition of line i, line i is marked (at stage s) iff

∆ ∩ Us(Γ) 6= ∅

⇒ idea for consequence set applied to stage of proof

Marking Definition for Minimal Abnormality: later

H



Derivability at a stage vs. final derivability H

idea: A derived on line i and the proof is stable with respect to i

stability concerns a specific consequence and a specific line !

Definition

A is finally derived from Γ on line i of a proof at stage s iff

(i) A is the second element of line i,

(ii) line i is unmarked at stage s, and

(iii) any extension of the proof may be further extended in such a way

that line i is unmarked.

Definition

Γ `AL A (A is finally AL-derivable from Γ) iff A is finally derived on a

line of a proof from Γ.

Even at the predicative level, there are criteria for final derivability.

H



H

LLL invalidates certain rules of ULL

AL invalidates certain applications of rules of ULL

ULL extends LLL by validating some further rules

AL extends LLL by validating some applications of some further rules

H



example

adaptive logic: IL

· lower limit logic: CL

· set of abnormalities: Ω = {∃A ∧ ∃∼A | A ∈ F◦}

· strategy : Reliability

Γ = {(Pa ∧ ∼Qa) ∧ ∼Ra, ∼Pb ∧ (Qb ∧ Rb), P c ∧ Rc, Qd ∧ ∼Pe}

H



H

1 (Pa ∧ ∼Qa) ∧ ∼Ra PREM ∅
2 ∼Pb ∧ (Qb ∧ Rb) PREM ∅
3 Pc ∧ Rc PREM ∅
4 Qd ∧ ∼Pe PREM ∅
5 ∀x(Qx ⊃ Rx) 2; RC {Qx ⊃ Rx}
6 Rd 4, 5; RU {Qx ⊃ Rx}
7 ∀x(∼Px ⊃ Qx) 2; RC {∼Px ⊃ Qx}
8 Qe 4, 7; RU {∼Px ⊃ Qx}

number of data of each form immaterial

⇒ same generalizations derivable from {Pa} and from {Pa, Pb}

in conditions and “Dab”-expressions, A(x) abbreviates

∃xA(x) ∧ ∃∼xA(x)

H



H

1 (Pa ∧ ∼Qa) ∧ ∼Ra PREM ∅
2 ∼Pb ∧ (Qb ∧ Rb) PREM ∅
3 Pc ∧ Rc PREM ∅
4 Qd ∧ ∼Pe PREM ∅
· · ·
9L10 ∀x(Px ⊃ ∼Rx) 1; RC {Px ⊃ ∼Rx}
10 Dab(Px ⊃ ∼Rx) 1, 3; RU ∅

H



H

1 (Pa ∧ ∼Qa) ∧ ∼Ra PREM ∅
2 ∼Pb ∧ (Qb ∧ Rb) PREM ∅
3 Pc ∧ Rc PREM ∅
4 Qd ∧ ∼Pe PREM ∅
· · ·
11L17 ∀x(Px ⊃ ∼Qx) 1; RC {Px ⊃ ∼Qx}
12L17 ∼Qc 3, 11; RU {Px ⊃ ∼Qx}
13L17 ∀x(Rx ⊃ Qx) 2; RC {Rx ⊃ Qx}
14L17 Qc 3, 13; RU {Rx ⊃ Qx}
15 ∃x∼(Px ⊃ ∼Qx) ∨ ∃x∼(Rx ⊃ Qx) 3; RU ∅
16 ∃x(Px ⊃ ∼Qx) ∧ ∃x(Rx ⊃ Qx) 1, 2; RU ∅
17 Dab{Px ⊃ ∼Qx, Rx ⊃ Qx} 15, 16; RU ∅

H



H

1 (Pa ∧ ∼Qa) ∧ ∼Ra PREM ∅
2 ∼Pb ∧ (Qb ∧ Rb) PREM ∅
3 Pc ∧ Rc PREM ∅
4 Qd ∧ ∼Pe PREM ∅
· · ·
18L22 ∀x(Px ⊃ Sx) 4; RC {Px ⊃ Sx}
19L22 Sa 1, 18; RU {Px ⊃ Sx}
20 ∃x∼(Px ⊃ Sx) ∨ ∃x∼(Px ⊃ ∼Sx) 3; RU ∅
21 ∃x(Px ⊃ Sx) ∧ ∃x(Px ⊃ ∼Sx) 4; RU ∅
22 Dab{Px ⊃ Sx, Px ⊃ ∼Sx} 20, 21; RU ∅

H



Some theoretical stuff H

a stage (of a proof) is a sequence of lines

a proof is a chain of (1 or more) stages

a subsequent stage is obtained by adding a line to the stage

the marking definition determines which lines of the stage are marked

(marks may come and go with the stage)

an extension of a proof P is a proof P′ that has P as its initial fragment

Definition (repetition)

A is finally derived from Γ on line i of a proof at stage s iff

(i) A is the second element of line i,

(ii) line i is not marked at stage s, and

(iii) any extension of the proof may be further extended in such a way

that line i is unmarked.

H



H

for some logics (esp. Minimal Abnormality strategy), premise sets and

conclusions, stability (final derivability) is reached only after infinitely

many stages

if a stage has infinitely many lines, the next stage is reached by inserting

a line (variant)

pace Leon Horsten (transfinite proofs)

H



Game theoretic approaches to final derivability H

example:

proponent provides proof P in which A is derived at an unmarked line i

A is finally derived at i

iff

any extension (by the opponent) of P into a P′ in which i is marked

can be extended (by the proponent) into a P′′ in which i is unmarked

the proponent has an ‘answer’ to any ‘attack’

3.3 3



3.4 Semantics H

Dab(∆) is a minimal Dab-consequence of Γ:

Γ �LLL Dab(∆) and, for all ∆′ ⊂ ∆, Γ 2LLL Dab(∆′)

where M is a LLL-model: Ab(M) = {A ∈ Ω | M |= A}

Reliability

where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences of Γ,

U(Γ) = ∆1 ∪ ∆2 ∪ . . .

a LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ)

Γ �AL A iff all reliable models of Γ verify A

H



Minimal Abnormality H

a LLL-model M of Γ is minimally abnormal

iff

there is no LLL-model M ′ of Γ for which Ab(M ′) ⊂ Ab(M)

Γ �AL A iff all minimally abnormal models of Γ verify A

H
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H

there are no AL-models, but only AL-models of some Γ

all LLL-models are AL-models of some Γ

the AL-semantics selects some LLL-models of Γ as AL-models of Γ
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3.5 Annotated Dynamic Proofs: Minimal Abnormality H

rules (as for Reliability) and marking definition

where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas derived

on the condition ∅ at stage s

Φ◦
s(Γ): the set of all sets that contain one member of each ∆i

Φ?
s(Γ): contains, for any ϕ ∈ Φ◦

s(Γ), CnLLL(ϕ) ∩ Ω

Φs(Γ): ϕ ∈ Φ?
s(Γ) that are not proper supersets of a ϕ′ ∈ Φ?

s(Γ)

Definition

where A is the formula and ∆ is the condition of line i,

line i is marked at stage s iff,

(i) there is no ϕ ∈ Φs(Γ) such that ϕ ∩ ∆ = ∅,
or

(ii) for some ϕ ∈ Φs(Γ), there is no line at which A is derived on a

condition Θ for which ϕ ∩ Θ = ∅

H



H

example: Γ = {∼p, ∼q, p ∨ q, p ∨ r, q ∨ s}

Γ `ACLuNm r ∨ s

Γ 0ACLuNr r ∨ s

... ... ...

· r ∨ s {p ∧ ∼p}
· r ∨ s {q ∧ ∼q}
· (p ∧ ∼p) ∨ (q ∧ ∼q) ∅
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3.6 Some Properties H

Soundness: if Γ `AL A then Γ �AL A

Completeness: if Γ �AL A then Γ `AL A

Derivability Adjustment Theorem:

A ∈ CnULL(Γ) iff A ∨ Dab(∆) ∈ CnLLL(Γ) for some ∆ ⊂ Ω.

Reassurance: if CnLLL(Γ) is not trivial, then CnAL(Γ) is not trivial

(if Γ has LLL-models, then it has AL-models)

Strong Reassurance: if a LLL-model M of Γ is not a AL-model of Γ,

then Ab(M ′) ⊂ Ab(M) for some AL-model M ′ of Γ.

Proof Invariance: if Γ `AL A, then every AL-proof from Γ can be

extended in such a way that A is finally derived in it.

CnLLL(Γ) ⊆ CnAL(Γ) ⊆ CnULL(Γ) (⊂ and = where justifiable)

. . .
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4 Combining Adaptive Logics

4.1 By Union

4.2 By Intersection and Union

4.3 Sequential Combination
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4.1 By Union H

required:

combined adaptive logics share lower limit and strategy

Ω = Ω1 ∪ Ω2

example: inductive generalization + abduction

example: any adaptive logic + plausibility extension

handling inconsistency + plausibility extension

inductive generalization + plausibility extension

. . .

4.1 4



4.2 By Intersection and Union H

required:

· common strategy

· intersection of lower limits is a (compact and monotonic) logic

LLL: intersection of the lower limit logics

Ω = Ω1 ∪ Ω2

example: gluts/gaps with respect to several logical symbols

note: combination of all gluts and gaps with ambiguity (zero logic)

4.2 4



example: sequential combination of the (infinitely many) ATi r H

· lower limit logic: T

· set of abnormalities: Ωi = {♦iA ∧ ∼A | A ∈ W}
(abnormality is falsehood of an expectancy)

· strategy : Reliability

upper limit logic: Triv = T + ♦A ⊃ A

♦0A : A

♦1A : ♦A

♦2A : ♦♦A

. . .

H



the combination H

we want CnPref(Γ) = . . . CnAT3(CnAT2(CnAT1(Γ))) (1)

seems superposition of supertasks

Proofs: (skipping a couple of details)

at every stage:

· apply rules of AT1, AT2, . . . in any order

· Marking definition: mark first for AT1, next for AT2, . . .

up to the highest ♦i that occurs in the proof

finite stage may contain applications of every ATi

Notwithstanding (1), some criteria warrant final derivability

after finitely many steps.

H



other examples

handling (different kinds) of background knowledge

+

inductive generalization

diagnosis + inductive generalization

handling inconsistency + abduction

(abduction from inconsistent knowledge)

handling inconsistency + compatibility

paraconsistent compatibility

pragmatic truth in terms of partial structures (da Costa et al.)

handling inconsistency + question evocation

. . .

4.3 4



5 Decidability and Decisions

5.1 The Challenge

5.2 Tableaux

5.3 Procedural Criterion

5.4 What If No Criterion Applies
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5.1 The Challenge H

the reasoning patterns explicated by adaptive logics

· are undecidable

· there is no positive test for them

same should obtain for the explications

note: not all are non-monotonic

note: (example: Rescher’s Weak Consequence Relation)

note: some decidable inference relations can be characterized by

adaptive logics (example: R→)

H



given that there is no positive test for the inference relation H

(1) one may still search for criteria for final derivability

· the block semantics

· tableau methods

· procedural criterion

(2) What if no criterion applies?

Can one sensibly decide on the basis of derivability at a stage?

5.1 5



5.2 Tableaux H

idea: construct tableau for A1, . . . , An `LLL B as follows

· start by writing ·TA1, . . . , ·TAn, FB

· apply rules: descendants of labelled formulas are labelled

rules for negation F∼A
TA

T∼A
TA | FA



5.2 Tableaux H

idea: construct tableau for A1, . . . , An `LLL B as follows

· start by writing ·TA1, . . . , ·TAn, FB

· apply rules: descendants of labelled formulas are labelled

· each branch: set of abnormalities, set of labelled abnormalities

abnormality: [·]TA and [·]T∼A (no, one or two labels)

labelled abnormality: ·TA and ·T∼A



5.2 Tableaux H

idea: construct tableau for A1, . . . , An `LLL B as follows

· start by writing ·TA1, . . . , ·TAn, FB

· apply rules: descendants of labelled formulas are labelled

· each branch: set of abnormalities, set of labelled abnormalities

· mark the unsuitable branches (in function of the strategy)

Minimal abnormality :

mark branch iff its set of abnormalities is a proper subset

of the set of labelled abnormalities of another branch



5.2 Tableaux H

idea: construct tableau for A1, . . . , An `LLL B as follows

· start by writing ·TA1, . . . , ·TAn, FB

· apply rules: descendants of labelled formulas are labelled

· each branch: set of abnormalities, set of labelled abnormalities

· mark the unsuitable branches (in function of the strategy)

· in the predicative case: apply finishing procedure

· tableau closes iff all branches are marked or closed

branch closed: [·]TA and [·]FA

H



some elementary illustrations:

·T∼∼p
Fp

·T∼p ·F∼p
·Tp ·Fp ·Tp
X X
× ×

·T∼p
·Tp ∨ q
Fq

·Tp ·Fp
·Tp ·Tq ·Tp ·Tq
X X ⊗

× ×
·Tp
·T∼p
F∼(q ∧ ∼q)
Tq ∧ ∼q
Tq
T∼q

Tq Fq
X X

×

X

5.2 5



5.3 Procedural Criterion H

prospective proofs

· contain most of the proof heuristics

· enable one to define a procedure

applied to ACLuNr and can be generalized

if the (three stage) procedure is applied to A1, . . . , An ` B and stops,

we can read off whether the expression is true or false

propositional examples:

∼q, p ∨ q, ∼p 0 p pdp2 80

p ∨ q, ∼q, p ∨ r, ∼r, p ∨ s, ∼s, q ∨ r ` p pdp2 81

decision procedure at propositional level

criteria at predicative level

5.3 5



5.4 What If No Criterion Applies H

Given the presupposition that abnormalities are false until and unless

proven otherwise, the derivability of A on a condition ∆ of which no

member is shown to be unreliable is a good reason to consider A as

derivable.

The block analysis shows:

as the proof proceeds, one may obtain more insights in the premises

(and cannot lose insights in the premises)

· derivability at a stage converges towards final derivability

· economical considerations

(cost of proceeding, possible cost of wrong decision, . . . )
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6 Further examples and applications

6.1 Corrective

6.2 Ampliative (+ ampliative and corrective)

6.3 Incorporation

6.4 Applications

6 0



6.1 Corrective H

• ACLuNr and ACLuNm (negation gluts)

• other paraconsistent logics as LLL, including ANA

• negation gaps

• gluts/gaps for all logical symbols

• ambiguity adaptive logics

• adaptive zero logic

• corrective deontic logics

• prioritized ial

• . . .
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6.2 Ampliative (+ ampliative and corrective) H

• compatibility (characterization)

• compatibility with inconsistent premises

• diagnosis

• prioritized adaptive logics

• inductive generalization

• abduction

• inference to the best explanation

• analogies, metaphors

• erotetic evocation and erotetic inference

• discussions

• . . .
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6.3 Incorporation H

• flat Rescher–Manor consequence relations (+ extensions)

• partial structures and pragmatic truth

• prioritized Rescher–Manor consequence relations

• circumscription, defaults, negation as failure, . . .

• dynamic characterization of R→

• signed systems (Besnard & C◦)

• . . .
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6.4 Applications H

• scientific discovery and creativity

• scientific explanation

• diagnosis

• positions defended / agreed upon in discussions

• changing positions in discussions

• belief revision in inconsistent contexts

• inconsistent arithmetic

• inductive statistical explanation

• tentatively eliminating abnormalities

• Gricean maximes

• . . .
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