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A% !
Dynamic Dialectical Logics*

D. Batens

1. Introduction

The logics I present in this paper have some quite unusual properties. When
I enumerated them in a lecture, some logicians started laughing, apparently
because they thought I was fooling the non-logicians among the audience.
To whatever extent-the properties of these logics clash with the traditional
logician’s prejudices, I claim that they are meaningful, useful, and even
indispensable to reconstruct important deductive thought processes of a
specific kind. I realize Of course that 1 shall have to offer some arguments
in order to motivate the reader not to drop out on me, and I shall indeed
offer two distinct ones. My first argument will at best convince those who
take dialectics to be meaningful and important: [ shall show that dynamic
dialectical logics capture some essential features of the by now traditional
notion of dialectics. My second argument, however, is meant to convince
all. I shall indeed consider a paradigm case for the application of these
logics. Apart from its motivational use, this paradigm case is interesting
because I arrived at the present logics by analysing it.

Before I try to convince you to buy dynamic dialectical logics, let me
informally sketch their main features. They are dynamic in the following
sense: in constructing proofs by means of these logics from certain sets of
sentences we run into cases where (i) the rules of inference are modified
in view of the sentences derived up to that point of time, i.e. at that stage
of the proof, and (ii) certain sentences that are derivable and even derived
at some point in time, are not derivable any more at some later point in
time, and vice versa. Furthermore, I call these logics dialectical because
their dynamics depends essentially on the occurrence of inconsistencies in
the set of sentences that are derived at some point in time.

‘In recent years a large number of logics have been developed that are
called paraconsistent or static dialectical logics. Paraconsistent logicians
disagree about the usefulness of and motivation for some of these logics,
but I shall not enter into this debate here. An essential property of such
logics is that they do not sanction as correct such rules of inference as
‘From A and ~A to infer B’ or ‘From A & ~A to infer B’.! As a consequence,
paraconsistent logics capture some aspects of dialectics, viz. that incon-
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sistency does not lead to triviality, that contradictions (and inconsistent
theories) are not necessarily false, and that inconsistent sets of sentences
may be handled in a sensible way by deductive logics. Dynamic dialectical
logics share the aforementioned properties with paraconsistent logics, but
in contradistinction to the latter they are dynamic in the sense explained
above. As a consequence, the derivability of some sentence from some set
of premisses cannot be defined without referring to a stage in the proof,
which for simplicity’s sake I shall often call a time. It will turn out, however,
that it is possible to define a notion of final derivability with respect to
dynamic logics; A is finally derivable from « if and only if it is possible to
construct a proof of A from members of « in such a way that A will remain
derivable at any stage in any continuation of this proof from a. It is of
course strongly desirable that such a notion of final derivability may be
defined and that at least a number of sets of sentences lead to a set of final
consequences, i.e. to a set of sentences that are finally derivable from the
set under consideration. If this were not so, the status of dynamic dialectical
logics as inferential devices would be utterly questionable.

In view of the fact that my logics are dynamic but nevertheless lead to
a set of final consequences of sets of premisses, they may also be described
as adaptive logics: if we construct a proof from the set a in terms of a
dynamic dialectical logic, the logic adapts itself to a until we reach a set
of final consequences of a. Immediately connected to the adaptive character
of dynamic dialectical logics is their property, quite peculiar for deductive
logics, that A may be a final consequence of a without being a final
consequence of a U B. This conflicts with the widespread conviction which
Massey, 1981, p. 490 formulates as follows: ... as everyone knows, valid
[deductive] arguments remain valid no matter what other premisses are
added.” Once one realizes that a deductive logic may adapt itself to a and
adapt itself to a u B differently because a U 8 differs from e, then it is not
difficult to see why, as with so many other things “everyone knows”, it is
prejudice that is really at stake. Needless to say that static paraconsistent
logics are not adaptive.

Another main distinction between static paraconsistent logics and
dynamic dialectical logics is related to their semantic presuppositions.
Paraconsistent logics give up the presupposition of the consistency of “the
world” in general, or at least give up this presupposition except for certain
categories of sentences, e.g., the conjunctive ones.? The semantic idea behind
dynamic dialectical logics is radically different: the world is supposed to
be consistent, except for those parts which need be inconsistent in order
for the premisses to be true. More exactly, but still in non-technical terms:
dynamic dialectical logics presuppose the consistent behaviour of all senten-
ces, except for those that have to behave inconsistently, i.e. have to be true
together with their negation, in order for the premisses to be true. The
matter may be easily illustrated by means of the rule of disjunctive syllogism,
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the famous béte noire of relevant logicians: From Av B and ~A to infer B.
According to the classical propositional calculus (pc) this rule is correct,
according to paraconsistent logics it is incorrect. Indeed, if both A and ~A
are true, then both AvB and ~A are true, even if B is false. Hence, B
cannot be derived from Av B and ~A according to static paraconsistent
logics. According to dynamic dialectical logics this derivation is correct
except if the premisses require that both A and ~A are true. In other words,
if the premisses may be true without both A and ~A being true, then it
will be supposed that one of them is false; under these conditions B cannot
be false if both Av B and ~A are true, and hence B is a consequence of
Av B and ~A. The relation of this semantic idea to the adaptive character
~ of dynamic dialectical logics is obvious.

The stand dynamic dialectical logics take with respect to, e.g., disjunctive
syllogism, may be summarized as follows: if Av B and ~A are derivable
from some set a, then B is derivable from this set unless A is derivable
from it. It is obvious that a certain circularity is involved here. In a
subsequent section I return to this problem and show that this circularity
may be fully eliminated by characterizing dynamic dialectical logics in terms
of instructions for constructing proofs. I shall even show that the notion of
a final consequence may be defined in a systematic and time independent
way, and why this is desirable although seemingly paradoxical. I now get
to the motivational bits. A

It seems to me that I do justice to those who take the idea of a deductive
dialectical thought process to be meaningful, by saying that such a process
is mainly characterized by the following properties:

(i) Deductive dialectical thought processes contain inconsistencies: for-
some A, both A and ~A are derived from (or stated in) the premisses.
It is essential that the premisses have not been changed in a relevant
way between the time at which one member of the inconsistent pair
is derived and the time at which the other is derived; if they had
been changed, the inconsistency would be apparent only.

(ii) The occurrence of an inconsistency leads neither to the mere rejection
of the premisses, nor to the derivability of all sentences from the
premisses, nor to the mere ending of the deductive process.

(iil) The occurrence of an inconsistency constitutes a problem the solution
of which leads to certain structural changes, to a structural dynamics.

(1v) This dynamics plays at the level of the rules of inference that may
be applied at some time, at the level of the set of sentences that are
to be taken as (still) derived at some time, and at the level of the
set of sentences that are derivable at some time.

(v) This dynamics also leads to a change in the premisses: the incon-
sistency under consideration is not any more derivable, and the new
set of premisses is essentially richer than the previous one.
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If applied to inconsistent sets of premisses, static paraconsistent logics lead
to proofs that display properties (i) and (ii), whereas dynamic dialectical
logics lead to proofs that display properties (i)-(iv). I shall comment on
(v) in a subsequent section. If applied to consistent sets of premisses,
dynamic dialectical logics lead to standard pc-proofs, whereas static para-
consistent logics lead to proofs that are considerably poorer. This feature
of dynamic dialectical logics is an advantage on which I return in the sequel.

Even readers who mistrust the notion of a deductive dialectical thought
process will have to agree that the logical reconstruction of the following
paradigm case is a sensible enterprise. Consider a theory T=(a, rc), i.e. a
couple the first element of which is a set of non-logical axioms and the
second element of which is a logic, viz. the classical propositional calculus.
The theorems of T are the sentences derivable from a by pc, i.e. the members
of Cnpc(a), the pc-consequence set of a. For the sake of simplicity we may
suppose that pc is given as a set of rules of inference, but this is of minor
importance with respect to my present point. From the fact that the second
element of T is pC we know that the theory is or was meant and believed
to be consistent. Suppose, however, we are able to derive some inconsistency
from a, and hence we find out that any sentence is a theorem of T as it
stands. The trouble is what we should do next. A first alternative is that we
simply reject T because it is false and trivial, i.e. contains all sentences as
theorems. If, however, T has an important function with respect to other
theories or with respect to our knowledge of or action in some domain,
then merely giving up T has disastrous consequences. Another alternative
is that we replace pc, the second element of the theory, by some paracon-
sistent logic, and hence move to a theory which has the same non-logical
axioms as T but a considerably poorer logical basis. This theory, however,
will be awfully poor with respect to T—by which I do not only mean that
it is not trivial, but also that it is much poorer than “what T was intended
to be””, much poorer than “T except for the pernicious consequences of its
inconsistency™. | realize that such expressions are vague, but shall show in
the sequel that we can make them precise in terms of dynamic dialectical
logics.

Given the failures of the two aforementioned alternatives, let us look for
something better.> In doing so we should keep in mind that we have two
problems. The first problem is that for the time being, i.e. as long as we
have no decent alternative for T, we should find a way to keep on employing
T in its full richness but avoiding the pitfalls of its triviality. The second
problem is that we should look for a theory T’ that can replace T. T itself
is heuristically important in this connection: we want a large number of
theorems of T, viz. all ““good” ones, to be theorems of T'. In order to make
sense of this requirement we need to know which sentences are theorems
of T. Alas, if we stick to pc, then all sentences are theorems of T, and if
we replace pc by some paraconsistent logic, we end up with a set of theorems

190



which is too poor for the reasons explained earlier. Summarizing the
situation: with respect to both problems we need “T except for the pernicious
consequences of its inconsistency”, and neither pc nor any static paracon-
sistent logic is able to provide us with this.

The next section contains some information on static paraconsistent
logics, which I shall need to articulate dynamic dialectical logics and to
explain how I arrived at them. On several occasions I shall refer to my
(1980b), but I did my utmost to make the present paper as self-contained
as possible.

2. Regular paraconsistent extensional propositional logics (RPEPLs)

Dynamic dialectical logics of the kind presented in this paper are in a very
specific sense intermediate between pc and some RPEPL, and are defined
with reference to some RPEPL. Rather than repeating here the definitions
from my (1980b), I shall clarify by means of an example and some hints
when a logic is a rRPEPL, and afterwards mention some technical results
which I need for the articulation of dynamic dialectical logics. The semantics
of the basic or minimal rpEPL, P1, is arrived at by simply dropping the
consistency requirement from the pc-semantics. Validity and the semantic
consequence relation are defined as usual with respect to the set of valuations
that have the following properties:*

CO. v:F-{0,1} (F is the set of all wffs)

Cl. v(AoB)=1iff v(A)=0or v(B) =1

C2. v(A&B)=1iff v(A)=v(B)=1

C3. v(AvB)=1iff v(A)=1o0r v(B)=1

C4. If v(A) =0, then v(~A) =1 (not conversely)

PI is well axiomatized in the sense of Anderson and Belnap (1975) by the
following axiomatic system, which is sound and strongly complete with
respect to the above semantics.

Axion;s:
Al p>(q>p) A2 (p=(q>r1)
>((p>q)>(p>r))
A3 ((p>9)=p)=p A4 (p&q)=p
AS (p&q)=q A 6. p>(q>(p&q))
A7 p>(pvq) A 8 q>(pvq)
A9 (p>r)>((g=r)>((pvq)>r)) Al10. (p>~p)>~p
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Rules: modus ponens and uniform substitution.

Notice that A10 is contextually equivalent to pv ~p as well as to (p>q)
((~p>q)>q). pris the full positive fragment of pc to which A10 is added.
By a rRPEPL I mean a paraconsistent logic between p1 (included) and pc
(notincluded). It is provable that a logic between p1 and pc is paraconsistent
if and only if p>(~p>q) is not a theorem. As the addition of the latter
formula as an axiom to PI results in pc, all logics between p1 and pc (not
included) are rPEPLs. None of the following formulas is a theorem of
any RPEPL: (~pvq)=>(p=q); ((pvq)&~p)>q; ((~p>q)&~q)>p;
(~p=24q)=2(~q>p); (~p>q) >((~p>~q)>p).

On the other hand each of the following pi-non-theorems is a theorem
of some RPEPL: ~(p& ~p); ~~(pv~p); ~p>(~~p>q); (p&q)>
(~(p&q)>1); ~~p>p; ~(p2q)>(p&~q); ~(p&q)>(~pv~q);
~(p v q) 2 (~p & ~q); and the converses of the last four formulas. Needless
to say that none of these two lists is exhaustive. In my (1980a) I showed
that the transition from an axiomatic formulation of a RPEPL to its semantic
formulation, and vice versa, is straightforward.

Some RPEPLs, €.g., the one arrived at by adding ~p> (~~p=q) to pi,
are not strictly paraconsistent. Although these are paraconsistent (simpliciter),
some inconsistencies lead to triviality, i.e. anything may be derived from
inconsistencies of certain forms. Also, some RPEPLs are maximally paracon-
sistent in that they have no proper extension which is paraconsistent; in
other words, there are no logics between them and pc. Some, but not all,
maximally paraconsistent logics are strictly paraconsistent. For all RpEpL I
stipulate that the syntactic consequence relation is determined by:

(1) By,...,B,-Aiff (B;&...&B,)>Aisa theorem.

Traditionalists held the position that dialectics is nonsense because anything
is derivable from an inconsistency. Naive paraconsistent logicians might
hold the position that dialectics is nonsense because inconsistencies do not
constitute a problem from a logical point of view. It may be demonstrated,
however, that anytime we are able to replace an inconsistent but nontrivial
theory T by a consistent theory T' in such a way that any theorem of T
corresponds by some translation relation to a theorem of T, then we made
a net gain in that T' will be richer, e.g., with respect to its conceptual system,
than T.
1 now prove two theorems that are important for the amculatlon of
dynamic dialectical logics.
Theorem 1. For any RPEPL Plz, if +p,(C, & ~C,)v...v(Ch & ~C,,) VA,
then FpcA.
Proof. Consider an extension of the pi-semantics that is adequate for piz.
(It is obvious that there is one in view of my [1980a].) All pc-valuations
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are Piz-valuations, and hence (C,& ~C,)v...v(C, & ~C,) VA is pc-
valid. But then A is pc-valid and hence a pc-theorem. [
Theorem 2. For any RPEPL Plz, if Fpc A, then there is a finite number of
formulas C,, ..., C, such that Fp,(C, & ~C,)v...v (Cn& ~C,) v A.
Proof. As for pc, the value assigned to A by some pi-valuation depends
only on the values assigned by this valuation to subformulas of A. Let
{Ci,...,Cpn} be the (obviously finite) set of all C; for which ~C;is a
subformula of A. If some pi-valuation v assigns the value 0 to A, then
there are C; such that v(C;) = v(~C;) =1, as may easily be seen from the
pi-semantics. Hence v((C, & ~C,)v...v(Cy & ~C,)vA) =1, It follows
that this wff is pi-valid and hence a pi-theorem. As all RPEPL are pi-
extensions, the wfl is also piz-valid. [

Corollary 1. For all RPEPL Plz, kpcA iff, for some Cy,...,Cp,
Fpi(Ci & ~C))v...v(C, & ~C,) VA.

This corollary deserves careful attention because it suggests the central idea

behind the articulation of dynamic dialectical logics. We may paraphrase

it as follows: if A is pc-valid, then, according to any rRPEPL, either one of

a finite number of formulas behaves inconsistently, i.e. is true together with

its negation, or else A is true. E.g., although (2) is not pi-valid, (3) is pi-valid.

(2) ((pva)&~p)=q

(3) (p&~p)v(((pvq) & ~p)>q)
which reads: either p behaves inconsistently, 8r else (pvq) & ~p implies
q. Notice that (3) is not equivalent to (4) in p1.

(4) ~(p&~p)>(((pvq) & ~p)>q)

Indeed, (4) is not p1-valid, which may be easily seen by assigning the value
1 to p, ~p and ~(p & ~p) and the value 0 to q. In other words, that p
behaves inconsistently is correctly expressed by saying that p & ~p is true,
and that p behaves consistently is correctly expressed by saying that p & ~p
is false; but the latter is by no means guaranteed by the fact that ~(p & ~p)
is true: p & ~p and ~(p & ~p) may be true together. Notice also that not
every formula the negation of which is a subformula of A, should be turned
into a contradictory disjunct. Not only (5) but also (6) and (7) are pi-valid.

(5) (P& ~p)v(Q& ~q)v (r& ~r)v((r>(~p&~q))>((p&q) > ~r1))
(6) (p&~p)v((ro>(~p& ~q))>((p&q) > ~r))
(7) (& ~q)v((ro(~p&~q))>((p& q)> ~r))

The fact that both (6) and (7) are pi-valid shows that the second disjunct
of (6) is true in case p behaves consistently, but also in case q behaves
consistently. '
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Let us return to the validity of (3): either p behaves inconsistently, or
else q is true in case both pv q and ~p are true. In other words, whenever
p behaves consistently, q is derivable from pv q and ~p. To consider the
general case, suppose that (8) is p1-valid.

(8) (Ci&~C)v..v(Crn& ~Cr)v((B,&...& B,)>A)

If each C; behaves consistently, then the first m disjuncts are false and
hence the last disjunct is true. In other words, whenever all C; behave
consistently, A is derivable from By, ..., B,. In view of these results it seems
reasonable to say that any RPEPL determines two kinds of rules of inference,
viz. unconditional ones such as (9) and conditional ones such as (10).

(9) From A>B and A to infer B.
(10) Given that A behaves consistently, from Av B and ~A to infer B.

In some RPEPLs the fact that A behaves consistently cannot be expressed
syntactically, i.e. within the formal system. As a consequence, conditional
rules such as (10) cannot be applied in proofs based upon such rRrEPLs. In
other RPEPLs the fact that A behaves consistently can be expressed syntacti-
cally, but it is then provable that whatever may be derived by means of a
conditional rule may also be derived by means of some unconditional rule.
In other words, conditional rules of inference are either useless or super-
fluous with respect to proofs based on some rrepL. However, as I shall
show in the next section, the fact that an rRPepL determines conditional
rules of inference enables us to use it as a basis for the articulation of a
dynamic dialectical logic.

3. Enters dynamics

As I explained in section 1, dynamic dialectical logics should enable us to
find, for any inconsistent theory T= (e, pc), “T except for the pernicious
consequences of its inconsistency”. The fact that any rRPEPL determines
conditional rules of inference suggests that we might tackle the problem by
the following convention:

(11) A sentence behaves consistently according to some theory (or some
set a of premisses) if and only if either the sentence itself or its
negation is not derivable from a.

Whenever (8) is valid, we might formulate the corresponding conditional
rule of inference as follows:

(12) Given that, for each C;, either C; or ~C; is not derivable from the
set of premisses under consideration, from B,,..., B, to infer A.
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Although (12) is intuitively appealing, it does not tell us how to define a
dynamic dialectical logic from, say, p1. All it says is that the dynamic
dialectical logic based on pI should enable us to infer certain sentences
from a set of premisses only in case certain other sentences are not derivable
from the premisses. In order to define a dynamic dialectical logic we need
a way to circumvent this circularity.

A well-tried procedure to avoid circularity is to come down from the
heaven of systematic and abstract definition to the earthly level of concrete
actions. As far as logic is concerned this means that we should concentrate
on actual proofs instead of on the notion of derivability. The construction
of proofs is determined by instructions, viz. commands and permissions: if
you have written down this and that, then (you may) do so and so. It is
obvious, however, that (11) is altogether inappropriate to formulate instruc-
tions for proof construction, if these instructions themselves are to be based
upon concrete matters such as the lines of which the proof consists at some
time. Looking for an appropriate substitute for (11) we gain some hints
again by keeping in mind the object we pursue: T, “in its full richness”,
“‘except for the pernicious consequences of its inconsistency”. We want all
rules of inference that are validated by pc to apply, except in those cases
where they lead to triviality. In other words, we suppose that the theory (or
set of premisses) is consistent, except for those sentences the inconsistency
of which is unavoidable. This suggests that we replace (11) by:

~ (13) A sentence behaves consistently unless and until proved otherwise.

As a consequence, whenever (8) is valid, we get the following corresponding
conditional rule of inference: )

(14) Unless both some C; and its negation have actually been derived,
from B,,..., B, to infer A.

This dramatic move from the syntactic and semantic level to the pragmatic
level eliminates all circularity.

The reference to time in the term ‘until’ is essential, Suppose p has not
been proved at some time (stage in the proof) and hence behaves consistently
at that time; suppose furthermore that, given the consistent behaviour of
p, we derive q from pv q and ~p. Yet it is possible that we later derive p,
e.g., from r and r > p. From this time on, q is not any more derivable from

" pvqand ~p. A very simple example is displayed in the following proof:

(1) pvq premiss

(2) ~p premiss

(3) rop premiss

(4) T premiss

(5 q from (1) and (2) and the consistent behaviour of p
(6) p from (3) and (4)
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At time (4), viz. after line (4) has been written and before line (5) has been
written, q is derivable from the premisses; at time (6) q is not any more
derivable, because p behaves inconsistently. Obviously, it cannot merely
depend on the accidental way in which we construct a proof, whether or
not some sentence belongs to “T except for the pernicious consequences
of its inconsistency”. Hence, from time (6) on, we should consider q as
not any more derivable, and we should keep in mind not to use it for further
inferential steps. To assist our memory, we might delete line (4) after line
(6) has been written, or even add ‘deleted at time (6)’. In the sequel I shall
say that I delete some line, but, to avoid a mess for the printer, I shall put
double square brackets around the elements of the line.

Some readers probably still wonder whether something sensible is going
to come out. I beg their patience. I shall prove some nice properties of the
logics I am at the point of articulating, but first 1 have two further
clarifications. The first concerns speech. The ‘“times” I need are merely
members of an ordered series of intervals, each of which starts “at the
moment” some line in the proof has been written down, and is named after
the line number of this line. In the above proof line (4) should be deleted
at time (6). The second clarification concerns notation. The lines of a
standard (explicit) proof consist of four elements:

(i) a line number

(ii) the sentence (or formula) derived

(iii) the line numbers of the sentences from which (ii) is derived, and
(iv) the rule of inference that justifies the derivation

In dynamic dialectical logic proofs it is preferable to add a fifth element
to each line:

(v) the sentences that have to behave consistently in order for (ii) to be
derivable by (iv) from the second elements of the lines enumerated
in (iii).

By adding (v) it will be easy to detect at any time which lines have to be
deleted. For simplicity’s sake I shall talk about the third and fifth elements
of a line as about sets; this will enable me to say, e.g., that the intersection
of two fifth elements is empty. So much for preparation. Let’s move ahead
to the first dynamic dialectical logic.

4. The dynamic dialectical logic pp1*

This logic is based on p1, whence its name—the reason for the superscripted
star—is explained later. Its instructions read as follows:
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I1* If, at some time, both A and ~A occur as the second element of a
line, then all lines the fifth element of which contains A should be
deleted.

12 Atany time you may write down a line consisting of (i) an appropriate
line number, (ii) a premiss, (iii} ‘premiss’, (iv) a dash, (v) ‘@".

I3 If(B,&...&B,)>A s pi-valid and if each B, occurs as the second
clement of some line, then one may write down a line consisting of
(i) an appropriate line number, (ii) A, (iii) for each B, the line
number of a line at which it occurs as the second element, (vi)
‘B, ..., Bo/A’, and (v) the union of the fifth elements of all lines
listed in (iii).}?

14* If (C,&~C))v.. . v(Cn & ~Cr)v((B, &...&B,)2A) is pr-valid,
and if each B; occurs as the second element of a line whereas, for
each C;, either C; or ~C; does not occur as the second element of a
line, then one may write down a line consisting of (i) an appropriate
line number, (ii) A, (iii) for each B,, the line number of a line at
which it occurs as the second element, (iv) ‘B,,..., B,/A’, and (v)
the union of {C,, ..., C,} and the fifth elements of all lines listed in

(ii).6

The specification of the fifth element in I3 and 14 may cause some amazement
on the part of the reader, which will be removed by the following example.

. (1) ~p&r premiss — g
(2) q>p premiss — 4
(3) qv~r premiss — 4
(4 ro>p premiss — 2
(5) ~p (1) A&B/A 4
(6) r (1) A&B/B g

[(7) ~q (2),(5) A>B,~B/~A p] deleted at time (9)

[(8) ~r (3),(7) AvB,~A/B p, q ] deleted at time (9)
(9) p (4),(6) A>B,A/B g

(10) q (3),(6) Av~B,B/A r

Both (5) and (6) are derivable unconditionally from (1), whence the fifth
element of these lines is empty. (7) is derivable from (2) and (5) because
p behaves consistently at time (6). (8) is derivable from (3) and (7) because
q behaves consistently at time (7). However, as ~q was only derivable
because p behaved consistently—see line (7)—we should add p in the fifth
element of line (8); and indeed 14* forces us to do exactly so. If p had not
behaved consistently, then we would not have been able to derive ~r in
the way we did. At time (9) p does not behave consistently any more, and
hence I1* forces us to delete both line (7) and line (8).

This proof illustrates quite nicely the dynamic character of ppt*. From
time (2) to (8) ~q is derivable, and at times (7) and (8) it is derived. From
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time (9) on it is not derived any more, and not derivable either. On the
other hand, q is not derivable from (3) and (6) at time (8), because r
behaves inconsistently at that time. But at time (9) r behaves consistently
again, and consequently q is derivable. Hence, the dynamics with respect
to the sentences that are derived at some time and with respect to the
sentences that are derivable at some time actually occurs. The dynamics
with respect to the rules of inference may be illustrated as follows: up to
time (&) the rule of modus tollens may be applied to > p and ~p in order
to infer ~q. From time (9) on, however, this rule becomes restricted and
cannot any more be applied to those formulas. In general, the dynamics
with respect to the rules concerns their range of application. This range
may change several times as the proof proceeds, and depends on the
inconsistencies that are (still) derived at some time. It is obvious that bpi*
is a dynamic dialectical logic in the sense explained in section 1. It is easily
demonstrated that the set of ppi*-consequences of some set « is generally
richer than the pi-consequence set of a. E.g., q is not a pi-consequence of
the premisses (1)-(4). If « is consistent, all pc-consequences of « are
ppr¥-consequences of o and vice versa. If a is inconsistent, its set of
DPI*-consequences does not contain all sentences and hence is poorer than
its set of Pc-consequences.

The reader might wonder what might happen if we were to continue the
proof after line (10). The answer is that nothing worth mentioning will
happen. Indeed, no line that is not deleted in the present proof will be
deleted in any of its extensions, and no further atoms (propositional vari-
ables and their negations) will be derived. The only moves that are still
possible are applications of such rules as conjunction, addition, commutativ-
ity, and likewise uninteresting stuff. In view of the fact that p1 validates the
rule of irrelevance, viz. A/B > A, as well as addition, the pri*.consequence
set of premisses (1)-(4) is identical to the pi-consequence set of
p& ~p & q&r. I do not prove all this, because I shall show that per* has
a serious drawback, which is a very decent reason to replace it by the
improvement Dp1. Before doing so, however, I stress again the dynamic
character of Dp1*: no static logic leads to the same set of consequences from
the premisses (1)-(4). Indeed, in the preceding proof q is derived from
qv ~r and r, and will not be deleted in any extension of this proof; s to
the contrary is not derivable in any extension of this proof, although both
sv ~p and p are derivable in it.

As I announced, ppi* has a serious drawback. Consider the set of
premisses {~p, ~q, pv q} and the following proof:

(1) ~p  premiss — 4
(2) ~q premiss — ')
(3) pvq  premiss — 4
4 pr (2,03 AvB,~B/A q
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As p behaves inconsistently at time (4), it is obvious that it will not be
possible to derive q in any extension of this proof, and hence it is obvious
also that line (4) will not be deleted in any extension of this proof. However,
compare the preceding proof with the one that contains (1)-(3) as its first
three lines, but as its fourth line:

(4)q (1),(3) AvB,~A/B p

Here q behaves inconsistently at time (4) and ever thereafter in any extension
of this proof, whereas p is not derivable in any such extension. By comparing
the two proofs, we find out that it depends merely on the accidental way
in which we start off the proof whether p is derivable and q is not, or the
other way around. This situation is most unpalatable. If you agree, skip the
next paragraph, if you take the situation to be palatable or, even worse,
"desirable, let me try to convince you.

Some people who consider dialectical deductive thought processes inter-
esting might argue—some did orally to me—that this situation, this indeter-
minacy, displays the creative aspects of dialectics. It seems to me, however,
that sheer accident should not be confused with creativity. No doubt, if
you have some good reason to prefer the derivation of p to the derivation
of q, and if the logic tells you whenever you have the choice, then it is quite
all right to derive p. Alas, none of these conditions applies. DPI* as it stands
does not tell you when you have the choice. Furthermore, the good reasons
you might have to prefer to derive p (and hence its inconsistency) instead
of q, are by no means logical reasons connected with pp1*; as far as ppr*
is concerned the choice for either of the two proofs is equally unjustifiable.
Consequently, the argument from dialectic creativity does not hold water.
From the more general point of view, which is that ppr* should provide
us, for any T =(a, pc), with “T except for the pernicious consequences of
its inconsistency”, the situation is even worse. From the premisses ~p, ~q
and pv q we may arrive at two different results, from other sets of premisses
we may arrive at two hundred different results. Indeterminacy might be
acceptable if at least we were guaranteed an overview of the alternatives;
but ppr* does not even provide us with such an overview. Whence we should
look for something better.

5. The (decent) dynamic dialectical logic ppi

It turns out that the indeterminacy to which pri* leads is very simple in
nature. Suppose that a line of the following form occurs as the last line in
a ppr*-proof:

(i) A (line numbers) ‘D,,...,D,,B/A’ C,,...,Cn,B
199



Suppose furthermore that line (i) has been written by application of 14*
and in view of the pi-validity of (15).

(15) (Cl&~C|)V...V(Cm&~cm)V(B&~B)
v((D;&...&D,&B)>A)

As (15) is valid, so is (16). This may easily be seen by applying the oblique
method: proceed as for pc but remember that A and ~A may be both true,
although not both false. '

(16) (C, & ~C)v...v(Cr& ~Cr)v(A& ~A) |
v((D;&...& Dy, & ~A)>~B) ‘

Suppose finally that ~A occurred already as the second element of a line
in the proof. Hence, the following line might have been written down instead
of the preceding line (i):

(i) ~B (line numbers) ‘D,,...,D,, ~A/~B" C,,...,Cy,A

In the original proof we established at time (i) the inconsistent behaviour
of A by relying on the consistent behaviour of B. If we replace the original
line (i) by the above second line (i), then at time (i) we establish the

inconsistent behaviour of B by relying on the consistent behaviour of A.

Notice indeed that B did already occur as the second element of a line, as

it was used to derive A at the original line (i). By considering all cases

where the inconsistent behaviour of some sentence may be established in

a per*-proof by relying on the consistent behaviour of some other senténces,

one readily demonstrates the following:

Theorem 3. If at some time in a pP1*-proof the inconsistency of A is proved
by relying on the consistent behaviour of B (and possibly of some other
sentences), then the inconsistency of B might have been proved by relying
on the consistent behaviour of A (and possibly of some other sentences).
The situation may be described as follows: in view of the premisses certain

sentences are connected with respect to their consistency; for each such

sentence there is a per*-proof in which it behaves inconsistently and in
which the other sentences (that are so connected) behave consistently. The
diagnosis of the trouble is that the premisses do not provide sufficient informa-
tion to decide which of the sentences behaves inconsistently and which con-
sistently. Reconsider the previous example with premisses ~p, ~qandpvq.

As either p or q is true, one of them behaves inconsistently, but the premisses

do not provide enough information to decide which of the two behaves

inconsistently (nor, obviously, to decide that both behave inconsistently).

So, a first remedy is straightforward: prevent the derivation of p as well as

the derivation of q. Alas, this is not the end of our worries. As a consequence
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of this move, both p and q behave consistently, and this is not quite all
right either. Indeed, (rv p) v q is (unconditionaliy) derivable from p v q, and
in view of the consistent behaviour of p and q, r is derivable from (rvp) v q,
~p and ~q. Hence, anything is derivable from pv q, ~p and ~q, which is
simply a restricted but still unacceptable form of ex falso quodlibet. As the
premisses do state that either p or q behaves inconsistently, to take both as
behaving consistently is mistaken and abortive. The problem we are facing
is then to define a set of instructions which, in case some sentences are
connected with respect to their consistency, prevent us from deriving the
inconsistency of one of them, but at the same time prevent us from relying
on the consistent behaviour of one of them in deriving some other sentence.
At first sight the derivability of (17) might be taken as the expression of
the fact that A,, ..., A, are connected with respect to their consistency.

(A7) (A& ~A)v...v(A & ~A,)

However, it is obvious that (18) is derivable whenever (17) is, even if the
consistency of Bis notin any sense related to the inconsistency of A, ..., A,.

(18) (A & ~A))v...v(A, & ~A,)v(B & ~B)

On the other hand, whenever (18) is derivable by relying on the consistent
behaviour of certain sentences, then (17) is derivable by relying on the
consistent behaviour of B and of those other sentences. This suggests that
we take (18) to be the expression of the fact that B, A,, ..., A, are connected
with respect to their consistency, unless (17) is derivable without relying on
the consistent behaviour of B.

In order to avoid the indeterminacy of prr*-proofs, we have to modify
both I11* and I4*. Instead of modifying both instructions in view of the
above (somewhat complicated) criterion, I shall replace I1* by an instruction
which does not specifically refer to the difference between ppi* and pern:

I1 If, at some time, a line that occurs in the proof cannot be repeated,
with only its first element adjusted, as the next line in the proof, then
delete that line.

In order to simplify the formulation of 14 I stipulate:
Definition. pk(a) is the set of all formulas (A; & ~A)v...v(A & ~A))
such that {A,,..., A} < a (hence px(@) =@).

14 If (C,&~C))v...v(C,&~C,)v((B, &... & B,})>A) is pi-valid, if
each B; occurs as the second element of some line, and if, for each
C; and. for all D,,...,D, (0<k) either (D, &~D;)v...v
(D, & ~D,) v (C; & ~C;) does not occur as the second element of a
line the fifth element of which is empty, or else some member of
pk(D,, ..., D) occurs as the second element of a line the fifth element
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of which is empty, then one may write down a line consisting of (i)
an appropriate line number, (ii) A, (iii) for each B;, the line number
of some line at which B; occurs as the second element, (iv)
‘By, ..., B,/A’,and (v) the union of {C,, ..., C,} and the fifth elements
of the lines listed in (iii).

DPI-proofs are constructed by application of I11-14. An inessential difference
between pDPI* and Dp1 is that the inconsistent behaviour of some sentence
A was taken to be expressed by the occurrence of both A and ~A as the
second element of a line in the former system, whereas it is taken to be
expressed by the occurrence of A & ~A as the second element of a line in
the latter system. This difference is inessential both from a systematic point
of view and from the practical point of view of proof construction: one
might fail to see an “obvious” inconsistency in both systems. Notice,
however, that 14 might be rephrased, albeit in a more complex way, without
referring to formulas that contain conjunctions; to do so will be necessary
when dealing with conjunctionless fragments of Dr1. 4 cannot be rephrased
without referring to formulas that contain disjunctions. This, however, is
not objectionable because in disjunctionless fragments of DPI no sentences
will ever be connected with respect to their consistency (implications cannot
lead to such connection because modus ponens is unconditionally correct);
disjunctionless fragments of DPI are equivalent to the corresponding frag-
ments of pp1*. Notice, finally, that 14 does never allow one to write down
a line if, for some C;, C; & ~C; occurs as the second element of a line the
fifth element of which is empty. In order to write such a line under these
conditions, some other line should contain nothing as its second element,
which is impossible.

Let us return for a moment to the two proofs discussed at the end of
section 4. As soon as we realize that (p & ~p) v (q & ~q) is unconditionally
derivable from the premisses, we shall write down this formula as the second
element of a line the fifth element of which is empty. As soon as such a line
is added to either proof, line (4) is deleted by application of I1, which is
exactly what we want. It is also instructive to consider some more compli-
cated sets of premisses. In order to save space I do not list any more proofs,
but I counsel the reader to write some out. Consider, e.g., the set of premisses
{p, ~pvq, ~qvr, ~r}. As soon as we realize that p, q and r are connected
with respect to their consistency, by deriving (p & ~p)v (g & ~q) v (r & ~r1)
unconditionally we shall have to delete all lines the fifth element of which
contains r, for (p & ~p) v (q & ~q) cannot be derived unless by relying on
the consistent behaviour of r; analogously for p and q. Next, consider the
union of the above set of premisses with, e.g., {s, s © ~p}. In this case p is
given as a premiss and ~p is derivable without relying on the consistent
behaviour of either r or q, viz. from the two added premisses. Hence, we
may write a line the second element of which is p & ~p and the fifth element
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of which is empty. From this we see that p, q and r are not connected with
respect to their consistency on these premisses. After p & ~p has been
written down, q will not any more be derivable and a fortiori r will not any
more be derivable. Hence r behaves consistently from this time on, and by
relying on this we may derive ~q from ~qvr and ~r. This is exactly as it
should be: the latter set of premisses cannot be true unless p & ~p is true,
whereas no further contradiction need be true in order for the premisses
to be true.

In 14 there are two references to lines the fifth element of which is empty.
That the latter requirement is “harmless” may be understood from the
aforementioned relation between (17) and (18). If, however, we were to
reformulate 14 so as not to refer to the emptiness of the fifth element of
certain lines, we would arrive at awful complications. It is indeed possible
that p, q and r are connected with respect to their consistency, whereas
also p, s and u are connected with respect to their consistency. This is the
case, e.g., on the following set of premisses: {p, ~q, ~u, ~pvq, ~qvr,
~pvs, ~svu}. (p & ~p)v{(q& ~q) v (r& ~r) is derivable unconditionally
from these premisses, but at the same time p & ~p is derivable from them
by relying on the consistent behaviour of s and u, and hence by not relying
on the consistent behaviour of either q or r.

A possible objection to DpI might be that we might neglect to derive some
sentence A. It is then possible that certain sentences that would have been
derivable if A were derived, are not derivable; and that certain sentences
that would not have been derivable if A had been derived, are derivable.
All this is correct but not an objection to pp1. The instructions do indeed
not prevent us from writing out proofs which are uninteresting, redundant,
messy, or stupid. But here Dp1 is on a par with static logics. It is also true’
that the instructions as such do not constitute an algorithm for ‘A is derivable
from «’ or ‘A is finally derivable from a’. However, they were never intended
to constitute such algorithms. Furthermore, such algorithms do exist, as is
shown in the next section.

6. Some metatheory

In preparation for the proof of some interesting properties of ppr I list

some definitions.

Definition. A ppi-proof from a is a finite ordered series of lines arrived at
by consecutive applications of 11-I4, with 12 restricted to members of a,
and with I1 applied after the last line has been written.

It need not be remembered that deleted lines do not belong to a proof.

Definition. A,, ..., Ay are simultaneously derived in a Dp1-proof from a iff
each A; occurs as the second element of a line in that proof.
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Analogously for ‘A is derived in a pri-proof from a’. i

Definition. A,, ..., A are simultaneously ppri-derivable from a iff there is a
pri-proof from a in which they are simultaneously derived.

Analogously for ‘A is DPiI-derivable from o’.

Definition. A is finally* derived at some line in a pri-proof from « iff it
occurs as the second element of this line and this line will not be deleted
in any extension of the proof.

Definition. ar+§p A, A is finally* pei-derivable from a, iff there is a pr1-proof
from « in which A is finally derived at some line.

The terms ‘finally derived’ and ‘finally derivable’ (without asterisk) will be

defined later.

Theorem 4. p1 is decidable.

Proof. See my (1980b). A simple truth-tabular method as well as an oblique
method derives from the pI-semantics; mainly remember that both A and
~A may receive the value 1, and that at least one of them should; all
other connectives behave as for pc.

Lemma 1. If in a pri-proof from a A occurs as the second element and
Ci,...,Cm (0=<m) occurs as the fifth element of line (i), then aFpAv
(Ci&~Cpv...v(Cp & ~C,).

Proof is by induction. The lemma obviously holds if (i) is the first
line in the proof, for then either A€ a or ~p AvV(C, & ~C))v...v(Ch &
~C.). Suppose the lemma holds for all lines that precede (i).

Case 1: the third element of line (i) is ‘premiss’; then m=0, A€ a, and
hence al-p A.

Case 2: line (i) has been written by application of I3 or 14 and its third
element is empty in view of the fact that A is a pc-theorem (if A
is also a pi-theorem, then possibly m=0); consequently, arpAv
(C;&~C)v...v(Ch& ~C,).

Case 3: line (i) has been written by application of I3 or 14, its third element
is, say, (ji),...,(ja), where n>0 and the second elements of lines
(ju), ..., (Jn) are respectively By,..., B,. But then 5 (C; & ~C;)v...v
(Cn& ~C.)v((B, &... & B,) > A). Furthermore, as the union of the fifth
elements of lines (j,),..., (Ju) is asubset of {C,, ..., C,}, it follows from
the supposition that atp (B &...&B,)Vv(C; & ~C)v...v(Ch &
~Cq). Consequently, aFpAv(C, & ~Cy)v...v(Cr & ~C,). O

Lemma 2. If a+Ep A, then there are C,,...,C,, (0=<m) such that (i)
at-prAV(C, & ~C)v...v(C, & ~C,) and (ii) for all C;e{C,,..., Cn}
and for all Dy,...,Dy, either alrp(D; & ~Dy)v...v(D & ~Dy)v
(Ci & "”’C,) or at—-pl(D, & ~D1) V...V (Dk & ""‘Dk)

Proof. Suppose aF%pA, viz. that A is finally* derivable at some line (j)
in a pp1-proof from a. Suppose furthermore the fifth element of line ()
is Cy,...,Cp. It follows from lemma 1 that a-pAv(C, & ~Cy)v...v
(Cm & ~C,,). Suppose finally that, for some C;e{C,,...,C,} and for
some D,,...,D,, atp(D;&~D))v...v(D&~D)v(C & ~C),
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whereas atfp (D, & ~D;) v...v (D, & ~D,). Hence it is possible to add
to the proof a line the second element of which is (D, & ~D,)v...v
(D & ~Dy) v (C; & ~C;) and the fifth element of which is empty, whereas
no member of Dk(D,, ..., D,) occurs as the second element of a line the
fifth element of which is empty. Consequently, line (j) is deleted by
application of I1. This, however, is impossible in view of the supposition
we made at the outset. O

Lemma 3. If By,...,ByFp(D, & ~Dy)v...v(D & ~D,) and, for any
Di, Bi,...,Bytfp(D1 & ~Dy)v...v(Di.; & ~Di_) v (Disy & ~Diyy) v
...v(Dy & ~Dy), then each ~D; is a subformula of some B,;.

Proof. Suppose the implicans of the lemma holds true, and hence so does
its semantic counterpart. Hence there is a pi-valuation such that v(B,) =
...=v(B,)=1 and v(D;& ~D;) =0 whenever j#1i, and, for all pi-valu-
ations v, if v(B;)=...=v(B,)=1 and if v(D; & ~D;) =0 whenever j#i,
then v(D;) = v(~D;) = 1. It is obvious in view of the pI-semantics that this
is only possible if ~D; is a subformula of some B; or of some ~D;. Let
1(A) denote the number of symbols occurring in A,

Case 1: there is no D; such that 1(D;)>1(D;). Hence ~D; cannot be a
proper subformula of some ~D;. If ~D, were identical to ~D;, then we
would have v(D; & ~D;) =v(D; & ~D;), which is false. Consequently,
~D; is a subformula of some B,.

Case 2: there are D; such that 1(D;)> 1(D;). If ~D; is a subformula of
some ~D;, then it is readily shown by induction on 1(D;) that ~D; is a
subformula of some ~D; to which case 1 applies, and hence that ~D; is
a subformula of some B;. [

Theorem 5. B,,...,B,—%p A iff there are C,, ..., C,, (0=<m) such that (i)
Bi,...,BapAv(C, & ~Cy)v ... v(Cr & ~C,) and (ii) for all C;e
{Cy,...,Cn} and for all D,,...,D,, either B,,...,B,ip(D; & ~D,)
v..v(DL & ~D)v(Ci&~C;) or By...,BFp(D;&~D))v...v
(Dk & ~Dy).

Proof. One direction follows .from lemma 2. For the other suppose that
there are C,,...,C,, (0=m) such that (i) and (ii) are fulfilled. I shall
show that a pri-proof from B,, ..., B, may be constructed in which A is
finally* derived at some line. First write down all premisses by application
of 12 (we need n lines to do s0). Let o be the (finite) set of all formulas
the negation of which is a subformula of B, or...or B,. For any
{E;, ..., B} < o, consider:

(19) (E; & ~E,)v...v(E, & ~E)

and check whether By, ..., B,p;(19); whenever the outcome is positive,
add to the proof a line the second element of which is (19). As o is finite
and p1 is decidable (theorem 4), this will result in the addition of a finite
number of lines to the first n ones. It follows immediately from the
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supposition that a further line may be added which has A as its second
element, some or all members of the first n line numbers as its third,
some rule as its fourth, and C,, ..., C, as its fifth element; let (j) be its
first element. I now show that line (j) will not be deleted in any extension
of this proof. Suppose that C;e {C,, ..., Cr} and that (20) occurs as the
second element of a line the fifth element of which is empty.

(20) (Dl & ~D1) V...V (Dk & ~Dk) \ (Cl & ""’Cl)

From the supposition made at the outset, it follows that (21) is p1-derivable
from By,..., B,

(21) (Dl & ~D|) V...V (Dk & ~Dk)

From lemma 3 we know that the result obtained from (21) by deleting
all (D; & ~D;) for which ~D; is not a subformula of either B, or... B,
is pi-derivable from B,,..., B,. However, this result is of the form of
(19), and hence occurs already as the second element of some line the
fifth element of which is empty. Consequently, some DK(Dy,..., D)
occurs as the second element of a line the fifth element of which is empty,
and hence line (j) cannot be deleted on account of the presence of (20)
as the second element of a line. OO
Theorem 5 as it stands cannot be proved for infinite sets, because for
them o will not in general be finite. It is indeed possible that there is an
infinite set B of formulas which have the properties of (19), each of which
is pi-derivable from the infinite set @, and none of which is derivable from
the other members of B. It follows that, after line (j) has been written, it
is always possible to add a line the second element of which has the
properties of (20), the fifth element of which is empty, and for which no
member of pk(D;, ..., Dy) occurs as the second element of a line the fifth
element of which is empty. Nevertheless, it seems obvious that, under the
conditions stated in theorem 5, A is finally ppi-derivable from infinite sets
in some sense: whenever line (j) has been deleted because (20) has been
derived from some finite subset of a, we may derive some DK(Dy, ..., Dy)
from the same subset, and hence reintroduce line (j) with its line number
adjusted, and this line will not any more be deleted for the same reasons;

“in the end” A will not any more be deleted. These considerations refer to

infinite proofs, but we may arrive at the desired result without reference to

such animals too.

Definition. An intelligent extension of a ppi-proof from «a is an extension
such that, if the result of dropping some disjunct from (D, & ~Dy)v...v
(D, & ~D,) is p1-derivable from a, then this longer formula does not occur
occur as the second element of a line in the extension unless the shorter
formula occurs as the second element of a previous line the fifth element
of which is empty.
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Definition. A is finally derived at some line in a pp1-proof from a iff it occurs
as the second element of this line and this line will not be deleted in any
intelligent extension of the proof.

Definition. A,,..., Ay are simultaneously finally derived at some lines in a
DPi-proof from a iff each of them is finally derived at some line in that
proof.

Definition. atppiA, A is finally ppi-derivable from a, iff there is a DP1-proof
from « at a line of which A is finally derived.

Definition. Cnppi(a), the DPI-consequence set of a, is {AlatppA}.

Theorem 6. atppA iff there are C,, ..., C,, (0=<m) such that (i) atpAv
(C&~Cy)v...v(C,& ~C,) and (ii) for all C;e{C,,...,Cpn} and for
allDy,..., Dy,either aifp (D, & ~D;)v...v(Dy & ~D ) v(C; & ~C;) or
abp (D & ~D))v...v(D, & ~D,).

Proof. One direction: as for lemma 2; the other: obvious in view of the
definition of an intelligent extension.

Corollary 2. For all finite o, a-§p A iff abpprA.

The proof of theorems 7-9 is obvious or wholly analogous to previous proofs.

Theorem 7. If a is consistent, then Cnpp (@) = Cnpc(a).

Theorem 8. If Cnp(a) is inconsistent but non-trivial, then Cnp(a)s
Cnppr(a) c Cnpe(a). Notice that Cnp(a) ={A|a+p A} is decidable for
all finite and for certain infinite a.

Theorem 9. 1If Cnp((a) is decidable and app A, then any pei-proof from
a may be extended in such a way that A is finally derived at some line
in the extended proof.

Corollary 3. If Cnp(a) is decidable then all members of any finite B¢
Cnppi(a) are simultaneously finally derivable from a.

In other words, pP1 avoids the unwanted properties of per*. :

Lemma 4. If B,...,BaFpAv(C; & ~C))v...v(Ch& ~C,) an
B, ..., BaFmAV(Ci&~C)v...v(Ciiy &~Ci_y) v (Cisy & ~Ciuy)
v...v(C, & ~C,), then ~C; is a subformula of either A or B, or... or
B,.

Proof as for lemma 3.

Theorem 10. For all finite a, Cnpp(a) is decidable.

Proof. Let B be the set of all formulas (D, & ~D,)v...v(D, & ~D,) that
are pi-derivable from a, whereas no result of dropping one or more of
the disjuncts is ri-derivable from . It follows from lemma 3 and theorem
4 that B is finite and decidable. Let y, be the set of all formulas
(Ci&~C)v...v(Cr & ~C,,) such that atpAV(C; & ~C,)v...v
(Cm & ~C,,), whereas, for all C;e{C,,...,Cn}, a¥pmAv(C, & ~C,))
VooV (Cio & ~Cio ) v (Cisy & ~Cisy) v. ..V (C&~C,). It follows
from lemma 4 and theorem 4 that v, is finite and decidable, and that

atpAv(E, & ~E,)v...v(E, & ~E,) iff some member of pk(E,,..., E,)

is a member of y,. It is obvious that A e Cnpp(a) iff, for some Fe y,, no
disjunct of F is a disjunct of any member of 8. As B and vy, are finite,
it is decidable whether or not Ae Cnpp (). O
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All preceding lemmas and theorems concern either p1 or final ppi-deriva-
bility. Dri-derivability as such is indeed not very interesting. In order not
to bore the reader with unimportant results, I merely list two easily provable
theorems concerning pei-derivability which are of some interest.

Theorem 11. If « is consistent, then A,,..., A, are simultaneously DpI-

derivable from a iff they are all pc-derivable from a.

Theorem 12. If a is inconsistent, B < a, y < Cnpc(B), v is finite, and neither

B nor y contain some formula of the form (A, & ~A,)v...v (A, & ~A,)

(1=n), then all members of y are simultaneously ppi-derivable from a.

7. Theorems, axiomatizations, elegance

It seems to me that the common view on the role of axiomatic systems with
respect to logic is largely mistaken.” I cannot elaborate on this here, but
the reader will easily see some general consequences of my treatment of DPI.

We dispose of two characterizations of DPI, one in terms of proof construc-
tion, the other—a partial characterization only—in terms of final ppi-
consequences (cf. theorem 6). With respect to such characterizations of
logics, there are at least two different ways to define the set of DpI-theorems,
and each way leads to a different set of pri-theorems. On the one hand we
might define DPI-theorems as the formulas that are finally pp1-derivable from
the empty set of premisses. If we take the Dpi-instructions as they stand,
viz. not requiring that n>0 in I3 and 14, then the set of ppi-theorems is
identical to the set of pc-theorems on the above definition. The empty set
of premisses will indeed never lead to the inconsistent behaviour of some
sentences, and hence any pc-theorem may be written as the second element
of a line in a DPI-proof, and such line will not be deleted in any extension
of the proof. However, we may also define pri-theorems as the formulas
that are finally ppi-derivable from any set of premisses. On this definition
the set of ppi-theorems is identical to the set of pi-theorems.

The second definition has an advantage over the first. If we define
‘theorem’ in the second way, we may easily demonstrate that pei is
equivalent to the system obtained by adding the instruction that any theorem
may be written at any time in any proof as the second element of a line
with an appropriate line number, ‘theorem’ as its third member, a dash as
its fourth and ‘@ as its fifth element. Hence, on this view theorems may be
unconditionally asserted at any time, which sounds attractive. On the other
hand, the first definition has advantages over the second. If A is a theorem
on the first definition, A may be proved from no premisses by means of the
instructions I1-14; furthermore, any inferential step then corresponds to an
implicative theorem, even if this step presupposes the consistent behaviour
of certain sentences. Finally, all these theorems may be affirmed at any
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time, unless some relevant sentence behaves inconsistently. Notice that the
sense in which we use the term ‘Dpi-theorem’ is merely a matter of linguistic
convention. More important is that pp1 defines two sets of logical truths,
and that each of the two kinds of logical truths has its special features.

The fact that at least in one sense of the term all pc-theorems are
DpPI-theorems is interesting for the following reason. A large number of
non-classical propositional logics contain pc: Anderson and Belnap’s E and
R (see their 1975), Routley and Meyer’s static dialectical logic bL (see their
1976), numerous extensional paraconsistent logics, which may contain pc
in several senses (see my 1980b). Except for some RPEPLs in which the
strong (classical) negation is either primitive or defined (sic), and which
for that reason are not strictly paraconsistent, all those logics contain pc
only in that all theorems of some functionally complete pc-fragment, e.g.,
all theorems of its disjunction-negation fragment, are theorems of those
logics. However, most of these pc-theorems do not have their inferential
force in those logics; e.g., although ((pv q) & ~p) @ q is a theorem of E, q
cannot be inferred from pv q and ~p according to E, because modus ponens
fails for material implication. According to pr1 all pc-theorems have their
inferential force, except in case some inconsistency prevents an application
to specific sentences. Notice also that ppr contains pc in the connected
sense that all pc-proofs from consistent sets of premisses are DPI-proofs
from those sets of premisses.

It is obvious that ppr is neither characterized by some standard pc-
axiomatization nor by some standard pi-axiomatization. ppI simply cannot
be characterized by some axiomatization which does not contain rules that
take care of its dynamic character. It is even more obvious that pp1 cannot
be characterized with mere reference to some set of theorems—but even
static logics cannot be charactetized in this way.

I realize that some readers will complain about my formulation of pe1.
pri is defined with respect to the set of theorems of p1 (and the set of
pi-valid formulas). It would be more elegant to define pp1 with respect to
some set of axioms and rules of inference. My main aim, however, was to
show that there are dynamic dialectical logics that display some nice
properties, and it seems to me that I succeeded in showing this. Nevertheless,
it is quite trivial that there are formulations of ppi which are more elegant
according to traditional standards. To get one such formulation (i) turn the
PI-axioms listed in section 2 into axiom schemes, thus obtaining an infinite
supply of axioms, (ii) add a fifth instruction to 11-I14, which allows one to
write down a line with an axiom as its second element and ‘@’ as its fifth
element, (iii) modify I3 in such a way that it only leads to applications of
modus ponens, and (iv) modify 14 in such a way that it only leads to
applications of ‘‘conditional modus ponens”, viz. ‘from (C, & ~Cv...v
(C & ~Cy) v (B> A) and B to infer A’—or instead, (iv") modify 14 in such
a way that it only leads to applications of ‘from (C & ~C) v A to infer A’.
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Apart from its “elegance” this formulation throws some light on the nature
of a pri-proof.

8. Semantics

It is well-known that valuations v : F- {0, 1} are in one-one relation with
model sets, definable from them, e.g., by {A|v (A)=1}. From an intuitive
point of view, it is sometimes desirable to talk about “worlds” rather than
about valuations or model sets.® pc-worlds correspond to maximal consistent
sets; pl-worlds to non-trivial, deductively closed, implication saturated sets
(a set is implication saturated iff, for all B, it contains A> B whenever it
does not contain A; ¢f. my 1980a). ri-worlds may be inconsistent, but they
are maximally non-trivial in that the addition of any non-member renders
them trivial. The usual criterion for the semantic consequence relation is
that a=A iff A is true in all worlds in which all members of a are true.
Needless to say, this criterion will not enable us to arrive at an adequate
definition of a =pp; A, among other things because Dr1 is an adaptive logic,
viz. because the set of worlds we will consider will depend on a. We might,
however, replace the above criterion by the following one: akFpp A iff A
is true in all worlds in which all members of a are true, and that are as
consistent as possible with respect to the members of a. aF=pp A is meant
here to be the semantic counterpart of a ppy A, It is obvious that the worlds
referred to in this criterion are pi-worlds. Expressed in terms of valuations
this leads to:

Definition. a'=ppA iff v(A) =1 for all valuations v that fulfill the following
conditions (i) v(B) =1 for all Be e, and (ii) for all C, if v(C & ~C) =1,
then, for some D,,...,D, akFp(D;&~D))v...v(Di& ~Dy)v
(C& ~C) and v(D, & ~D))=...=v(D, & ~D,) =0.

Condition (ii) makes sure that v(C & ~C) =0 unless, for some Dy, ..., Dy,

(D& ~D))v...v(D & ~D,) v(C & ~C) is a pi-consequence of a and

(D, & ~D))v...v(Dy & ~D,) is not a pi-consequence of a. The pri-seman-

tics consists of the set of pi-valuations together with the above definition.

Theorem 13. If atpp A, then aFpp A (soundness).

Theorem 14. If al=pp A, then abpp A (strong completeness).

The proofs are obvious in view of the preceding definition and the remark

by which it is followed, lemma 1, theorem 6, and the soundness and strong

completeness of p1. It seems important to stress that the dynamic dialectical
logic has a very simple two-valued semantics: we need no reference to
accessibility relations or the Kripkean worlds.

I add a final remark concerning the difference between ppi* and ppi from

a semantic point of view. Suppose that akp(p& ~p)vi(q& ~q),

atpp & ~p and a¥pq & ~q, and suppose that no other contradictions
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are semantic pi-consequences of . In this case A will be finally pri-derivable
from a if and only if A is true in all worlds in which all members of « and
either p & ~p or q & ~q are true, but not both.” On the other hand, A is
finally derivable in some pp1*-proofs if it is true in all worlds in which all
members of @ and p & ~p are true and in which all other contradictions
are false, and will be finally derivable in some other Dpr*-proofs if it is true
in all worlds in which the members of @ and g & ~q are true and in which
all other contradictions are false. In other words, the “choice” for the
inconsistent behaviour of p and the consistent behaviour of q corresponds
directly to a choice of ri-worlds.

9. Some other dynamic dialectical logics of the type of pPI

There is an infinite number of rRPEPLS between p1 and pC (see my 1980b).
If in the instructions 11-14 we replace the reference to 1 by a reference to
some RPEPL Plz, then we obtain a dynamic dialectical logic DPiz. 1 shall
point to some differences between Dp1 and those DPIz.

Some RPEPLs are strictly paraconsistent, others are not; e.g., none of da
Costa’s logics C, is strictly paraconsistent. (See, e.g., his [1974].) If p1z is
not strictly paraconsistent, then the dynamic and adaptive character of pplz
is severely narrowed down. Let us consider at once a very strong RPEPL,
viz. plv, which is a maximal paraconsistent logic. Its semantic characteriz-
ation is obtained by adding to the pi-semantics:

If A is complex (not a variable), then v(~A) =1 iff v(A) = 0. Notice that,
e.g., (~p & ~ ~p) @ qis piv-valid, and hence that ~A, ~ ~A/B holds uncon-
ditionally according to piv; analogously for other complex formulas. In
other words, any sentence is finally ppiv-derivable from complex contradic-
tions (or complex inconsistencies). In general, whenever piz is not strictly
paraconsistent, then there are certain forms of contradictions such that, if
a contradiction of one of these forms is derivable from a, then Cnp;(a)=F
(remember that F is the set of all sentences, respectively formulas). This
suggests that dynamic dialectical logics based on RPEPLs that are not strictly
paraconsistent, are not very interesting. There is another reason why they
are not very interesting; reconsider piv as an example. The only way in
which piv is richer than p1 is that certain pi-theorems of the form of (22)
are piv-theorems even if we drop those disjuncts C; & ~C; in which C; is
complex.

(22) (C1& ~C))v...v(Cr& ~Cn)v(BDA)

As a consequence, DPt and Dpiv define exactly the same set of rules of
inference, except in that peiv will not require the consistent behaviour of
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any complex formula because Piv already presupposes that those formulas
behave consistently (and sanctions their inconsistent behaviour with
triviality). In other words, pri-proofs are identical to pDpiv-proofs, except
in that the fifth elements of the lines in the Driv-proofs need not contain
any complex formulas that might be contained in the fifth elements of the
lines of the ppi-proof. Suppose, however, that the inconsistent behaviour
of no such formula is derivable; then no line in the Dp1-proof will be deleted,
unless it will also be deleted in the priv-proof (because some variable
behaves inconsistently). Suppose on the other hand that some complex
formulas behave inconsistently; then any sentence is derivable in the DpIv-
proof, whereas some formulas will not be derivable in the pri-proof. Hence,
there is no reason why one might prefer ppiv above DPI: by using DPIv we
lose in safety against triviality, and we gain nothing. In general, whenever
Piz is not strictly paraconsistent, then there is a strictly paraconsistent piy
such that Cnpp,(a) = Cnpy(a), unless Cnp,(a) =F.

I now turn to strictly paraconsistent RPEPLs. These are closer to pc without
in any sense presupposing the consistency of certain formulas. Nevertheless,
the way in which they are richer than p1 could be characterized by saying
that they link the (in)consistent behaviour of certain sentences to the
(in)consistent behaviour of other sentences. If, e.g., we add p> ~~p as an
axiom to PI, then we get a system according to which ~p behaves incon-
sistently whenever p behaves inconsistently. Again, I consider at once a
maximal paraconsistent logic, viz. pis, which is interesting in several respects.
We obtain a semantic characterization of p1s by adding the following four
conditions to the pI-semantics:

CS5 v(~~A)=v(A)

C6 v(~(A>B))=v(A & ~B)
C7 v(~(A & B)) =v(~Av~B)
C8 v(~(AvB))=v(~A & ~B)

As Pis is strictly paraconsistent, it is easily provable that, for any finite o,
Cnpi(a) is non-trivial, which certainly is an important standard to be met
by dynamic dialectical logics.

In view of the fact that pIs is stronger than p1, one might be tempted to
believe that Dpis is stronger than pp1 and that Cnpp(a) will in general be
a proper subset of Cnppi (). This, however, is false. It is true, e.g. that p
is only finally pri-derivable from {~~p}ua in case ~p behaves con-
sistently, whereas p is finally Dpis-derivable from that set irrespective of the
consistent or inconsistent behaviour of ~p. However, exactly for this reason
it is possible that ~p behaves inconsistently in some ppi-proof, whereas p
behaves consistently in it, and this may be relied upon to infer, say ~q
from q=>p and ~p. In a DPis-proof, to the contrary, p will behave incon-
sistently whenever ~p behaves inconsistently, and hence ~q is not finally
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pris-derivable from q > p, ~p, and ~ ~p. All this suggests, it seems to me,
that prei1 is preferable to Dpis with respect to the paradigm case described
in section 1. ppI localizes inconsistencies as much as possible. If ~p behaves
consistently, then p is finally ppi-derivable from ~ ~p anyway; and if ~p
behaves inconsistently, then, it seems to me, it will in general be more
interesting to derive other sentences from ~p (and other sentences) by
relying on the consistent behaviour of p, rather than to derive p from ~ ~p.
I do realize, however, that the relations between pDpi-proofs and ppis-proofs
should be studied in more detail in order to reach a well-argued conclusion
on their respective merits.'°

10. Final comments and some open problems

Nicholas Rescher and Ruth Manor (see their 1970) have proposed a theory
on “inference from inconsistent premisses’ which among other things was
intended to solve the kind of problem I described in the paradigm case in
section 1. My dynamic dialectical logics are clearly distinct from their logical
machinery, both with respect to proof procedure and with respect to the
sets of consequences defined. I cannot argue in full why I take the dynamic
dialectical logics to be preferable to the logical machinery, but offer a few
comments (that will obviously be more significant to the reader who is
familiar with Rescher and Manor’s work). The Rescher-Manor approach
has the disadvantage of splitting up inconsistent sets of premisses into
maximal consistent subsets. As a consequence, certain premisses may get
totally disconnected: no consequences for the derivation of which all pre-
misses are needed will be attained. Furthermore, the outcome of the
Rescher-Manor approach is highly dependent on the way in which the
premisses are given; some premisses together with p & q will lead to different
consequences than the same premisses together with p and q separately,
and a premiss (p & ~p) & q will have no consequences at all, not even q.
As the maximal consistent subsets of some set of premisses are consistent,
the occurrence of some inconsistency will never block some inference in
the way it does according to Dp1. This is why, to my view, the set of inevitable
consequences is in some sense too weak, and in another too strong; and
analogously for the set of weak consequences and for the set of preferred
consequences. Rescher and Manor adapt the premisses to the logical require-
ment of consistency, whereas dynamic dialectical logics adapt themselves
to the set of premisses.

I realize quite well that relevant logicians will not be satisfied with my
dynamic dialectical logics, which are based on material implication. I agree
with them that there are important implications that differ drastically from
material implication, but I disagree with their claim that the latter is not
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really an implication and hence that modus ponens fails to hold for it. Not
being able to argue for my position here at some length, I only make two
comments relevant to the merits of logics based on material implication.
Relevant logicians have claimed ad nauseam that material implication is
just a kind of disjunction, and that disjunctive syllogism is an inferential
mistake. With respect to extensional paraconsistent and dynamic dialectical
logics, however, material implication cannot be defined in terms of the
(classical) disjunction: p>q is not derivable from ~pv q; the first means
that p is false or q is true, whereas the second means the ~p is true or q
is true—remember that the falsehood of p is not derivable from the truth
of ~p according to these logics. With respect to disjunctive syllogism, 1
fully agree that this is an inferential mistake if we do not presuppose the
world to be consistent. This is why disjunctive syllogism is incorrect accord-
ing to all RPEPLs, although modus ponens for material implication is correct
according to all of them. If, however, we presuppose that the world is
consistent—we might after all have some good reasons to presuppose
so—then disjunctive syllogism is correct. Apart from these comments “in
defense’, I want to point at least to one advantage of extensional logics.
Given the standard interpretation of the binary connectives, the presupposi-
tions we make about consistency (partial consistency, connections between
inconsistencies) will have immediate consequences on the correctness of
certain rules of inference; different presuppositions lead to different sets of
correct rules. It is precisely because of the existence of these relations that
I was able to articulate the present dynamic dialectical logics; and it is by
no means obvious that such logics may be defined on the basis of static
relevant logics, for all relevant logics give up the consistency presupposition
from the very start: they “play safe”. Relevant logicians realize this, and
even argue it is an advantage (see Routley and Meyer, 1976, section IV),
but of course a logic that “plays safe” cannot adapt itself to the set of
premisses in the same way as p1 does within DPIL.

Returning to extensional dynamic dialectical logics, I want to point
quickly at some possible variations. ppi informs us whenever certain senten-
ces are connected with respect to their consistency. Hence, it may easily be
adapted in such a way as to take account of non-logical preferences which
might enable one to choose for the inconsistent behaviour of one of the
connected sentences and for the consistent behaviour of the others. A more
important point concerns the elimination of inconsistencies. Here again
non-logical preferences might be taken into account to eliminate one *‘half”
of the inconsistency. This might be done in several sensible ways, e.g., by
eliminating the non-preferred half from the set of final consequences, but
nevertheless using it in the course of the proof to combine it with other
sentences in order to derive certain consequences. In some contexts, viz. in
case the contextual preferences may be expressed in terms of formal proper-
ties of inconsistencies, one might eliminate inconsistencies on ‘“‘logical
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grounds™ alone. Some interesting suggestions to this effect were made by
Leo Apostel (in his 1979), viz. to eliminate first the strongest inconsistencies
derived (those from which other inconsistencies may be derived, given *“the
rest” of the context). Another possibility, appropriate in some contexts,
would be to eliminate both “*halves” of the inconsistency. For example, bp1
might be adapted along the following lines: if, at some time, you have
derived A & ~A, then (i) believe neither A nor ~A, (ii) believe no proposi-
tion from which A or ~A is derivable, (iii) believe no proposition which
is derivable from A alone or from ~A alone, and which is not derivable
from some other proposition, (iv) do not believe that A behaves consistently,
and (v) continue to believe other propositions that are derivable from either
A or ~A together with other propositions. A star might discriminate a
non-believed proposition which nevertheless is still used for inferential
purposes.

Although I do believe that some logics may take care of the elimination
of inconsistencies, I do not believe that the “‘enrichment” of the premisses
can be taken care of by any deductive logic. This problem, it seems to me,
is typically a heuristic problem. Although possible enrichments may very
well be arrived at by algorithmic means, no algorithm could possibly lead
to “the best enrichment”. (It is well-known that the interesting enrichments
are conceptual in nature; whence it follows that the best enrichment will
probably always be the best among the set of enrichments discovered.)

I saved a kind of paradox for my final comment. A ppi-proof from some
finite set of premisses a proceeds dynamically. If constructed in an intel-
ligent way, it will lead to a set of sentences which are finally derivable from
a. If constructed in a very intelligent way, it will even lead to a set of
sentences B from which all final consequences of a are ri-derivable; ie.
Cnpi(B) =Cnppi(a). Yet, the set of all final pri-consequences of a,
Cnppi(a), may be defined in a systematic way, without reference to any
dynamics, and is determined before any (dynamic) proof has been construc-
ted. It seems to me that this does not indicate a disadvantage of my logics,
but rather that it reveals some inescapable property of dialectical thought
processes. I write ‘inescapable’ because (i) to give way to mere accident is
not a sensible escape, and (ii) if we referred to non-logical preferences, still
the final outcome would be determined by the logic, given those preferences.
Notice, however, that this determinism will sound paradoxical mainly to
non-dialecticians. Most dialecticians were determinists indeed.

Finally, I list some open problems:

1. The properties of the dynamic dialectical logics based on RPEPLs
deserve more study; an important problem is whether pp1 is indeed
preferable in all contexts, or only in some.

2. The *‘variations” mentioned in this section should be studied more
thoroughly in order to prove that they are adequate in specific contexts.
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3. Is it possible to define dynamic dialectical logics in terms of sets of
“natural” rules of inference only?

4. Are there any special problems concerning the corresponding predica-
tive logics, especially problems concerning decidability?

5. Is it possible to define logics that are even more adaptive in that their
static paraconsistent basis (p1 in case of Dp1) is not given from the
start, but determined by the inconsistencies that are derivable from
the set of premisses?

6. Relevant logics might be used as a basis for dynamic dialectical logics,
e.g., by defining (non-relevant) conditional rules as follows: if
(Bi&...&B,)»(Av(C, & ~C))v...v(Cp & ~C,)) is a theorem,
then, given the consistent behaviour of C,, ..., C,, from B,,... , Bm
to infer A. What are the properties of such logics? For which relevant
logics RL does @Fpgi A iff FpcA hold? For which Cnpg.(a)=
Cnpc(a), if a is consistent?

7. Same problems as in 6, but for dynamic dialectical logics based on
some RPEPL to which a relevant implication has been added.

Notes

* The main results of this paper were first presented in my “Dialectische processen
en dialectische logica’s” (1979), written for the “Werkgroep Dialectiek™ of the
Vrije Universiteit Brussel, directed by Jean-Pierre De Waele. I am especially
indebted to Leo Apostel, once my teacher and a friend ever since, were it only
because he cured me very patiently from a severe infection of classicitis. Finally,
I want to express my gratitude to Graham Priest who made detailed comments
on a former draft, which enabled me to correct several definitions and proofs; in
his 1979 he defended an approach that comes very close to the one developed here.

! These rules are not equivalent in all systems; see, e.g., Diego Marconi’s introduc-
tion to his 1979.

21 refer to sections 7 and 10 of my 1980b for technical details and for a discussion
of a sensible interpretation of such partial rejection of the consistency of the world.

*The alternative approach proposed by Nicholas Rescher and Ruth Manor is
discussed in section 10.

* There is no clause for =, material equivalence, because it is quite uninteresting
and furthermore might be introduced by means of its usual definition.

* The formulation of element (iv) is quite awkward. I shall actually write metafor-
mulas corresponding to the formulas B,, ..., B, and A, with '/’ between the next
to last and last one.

® 14 leads to the same results as I3 in case m=0. If n =0, then I3 enables one to
write the PI-theorem A as the second element of a line the third and fifth elements
of which are empty, and 14 enables one to write the PC-theorem A as the second
element of a line which has an empty third element and an appropriate fifth
element C,, ..., C,, if the condition on the C; is satisfied.
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7 Notice in this connection that an axiomatic system as such does not determine a
set of rules of inference, that dynamic logics cannot be characterized in the
standard way by an axiomatic system, and that some logics have no theorems at
all (I shall publish some results on such logics in the future).

® A referee once objected to a paper of mine that I talked about worlds without
presenting a ‘‘possible worlds” semantics. Apparently he was corrupted by
Kripke's presentation of his semantics for modal logics. One may easily rephrase
this semantics by considering valuations v: F - {0, 1} only, defining the accessibility
relation as a relation between valuations, and keep on associating worlds with
valuations.

9 See the definition of a'=ppA. The following example is helpful to realize why
the ‘not both’ has to be added: pv q, ~p, ~q+pp1 (P & q) 2 rbut vi(p&q)>r)=0
for all PI-valuations v for which v(pvq)=v(p & ~p)=v(qg& ~q)=1and v(r)=0.

10 1 discovered a nice graph that relates all DPIs-inconsistencies in two variables. 1
do not reproduce it because I do not yet understand which interesting consequen-
ces derive from this graph, if any.
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