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PARACONSISTENT EXTENSIONAL PROPOSITIONAL LOGICS.*

Diderik BATENS

1. Introduction

In this paper I develop some logics that are as close as possible to
the classical propositional calculus (PC) but 'do not presuppose that
the world is consistent. It will turn ‘out that there is one obvious basic
logic of this sort, which may be extended in several ways into richer
systems. I shall study the main formal properties of these systems and
offer some philosophical remarks about them.

The logics studied in this paper are material (and quasi-material)
paraconsistent logics. I refer the reader to section 2 for a definition of
«material logic» and «quasi-material logic». By a paraconsistent logic
I mean, following Ayda I. Arruda (1980), a logic that «can be
employed as underlying logic for inconsistent ‘but non-trivial
theories...» Incidently, the name ’paraconsistent logic’ was coined
recently by F. Miré Quesada, but the definition of this kind of logics
was offered years ago by. Newton C.A. da Costa. Quite some results
on paraconsistent logics have been published recently, and it is one of
the aims of the present paper to order the domain of those paracon-
sistent logics that are extensions of the full positive propositional
calculus. e

A first embrionic version of this paper was written in 1973. I got
interested in the subject because I believed, and still believe, it to be
relevant to several problems dealt with by Alan Ross Anderson and
Nuel D. Belnap in connection with their systems E and R, to the
problem of meaning relations (see my (1975a)), to the deduction
problem (see my (1975b)), etc. I owe it to Leo Apostel.that I later
became acquainted with the wide literature on paraconsistent and
dialectical logics. In this connection I refer especially to the work on

* Tamindebted to Leo Apostel, Richard Routley and Etienne Vermeersch for helpful -
comments; I am especially indebted to Newton C.A. da Costa whose detailed
comments on each section of a former draft were very valuable and stimulating and
pointed out several mistakes. As usual, responsibilities remain entirely with the author.
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relevant dialectical logics by Richard Routley and Robert K. Meyer,
and to the numerous papers on paraconsistent logics by Newton C.A.
da Costa and his collaborators. It turned out, however, that the
aforementioned basic system had never been studied (asfaras I could
find out), that most extensional paraconsistent logics on the market
are somewhere in between this basic'system and PC, and that the
notion of a maximal paraconsistent logic (see section 2) had not been
given any attention.

Ever since Aristotle the official doctrine has been that the world is
consistent. As a statement about the world-an-sich, this seems either
trivial or nonsensical. However, the statement may also be taken as
about the correct description of the world in a given language. As
such, it is not only meaningful, but possibly false. Notice that from the
fact that the correct description of the world. in some language is
consistent it does not follow that the same holds for the correct
description of the world in .another language, and vice versq.
Whenever I use the expression "inconsistent world’, I mean a world
that cannot be described consistently in a given language. I return to
all this later, and shall argue that inconsistent theories may be true as
well as false. I also refer the reader to Routley and Meyer (1976), to
Arruda (1980), to da Costa and Wolf (1978), and especially to Routley
(1979) for a discussion of the consistency principle and of the relation
between inconsistency and falsehood. I refer the reader to Apostel
(1979) for an extensive discussion of the relation between dialectics
(Hegel, Marx) and logical systems (propositional logics of action, etc.)
and of the relation between paraconsistent and dialectical logics.

The reader is prayed not to mind that the aim of this paper as well as
the underlying philosophical view conflict with the still widespread but
nonetheless wild dogma «Logica Una et Omnipotens est.» It is
fascinating to see how many logicians explicitly or implicitly subcribe
to this dogma without seeming to feel a need for justification. Even
philosophically minded logicians as excellent as Anderson and Belnap
seem to disregard in some of their arguments that there might' very
well be more than one correct analysis of entailment, depending on
the context. And even Routley and Meyer (1976, 17- 18) write
«Whichever is the case (i.e. whether the world is consistent or
inconsistent), however, the relevance position does not go wrong.
This provides a major reason why the relevance position is more
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rational than the other positions, should it turn out that the matter of
the consistency of the world cannot be definitely settled.» — an
argument which seems to lead to recognizing as the most rational logic
one that never «goes wrong», and this notwithstanding the fact that
those relevant logics that are not led into trouble with respect to
inconsistent worlds, are clearly too weak with respect to consistent
worlds. Fortunately, however, the dogma is more and more dis-
claimed. Zinov’ev (1973, 64) wrote already: «But it is precisely the
efforts to find the most adequate description of logical entailment in
contemporary logic that have destroyed this prejudice. As a matter of
fact, there is no single, perfect, «natural», etc., logical entailment
which simply has not been adequately described up to now.»

Once we start considering inconsistent sets of beliefs or inconsistent
theories, PC turns out to be completely misguided even as an
extensional logic. It will be articulated in detail in sections 4 and § in
what sense certain PC-theorems are invalid with respect to inconsis-
tent worlds, but it is clear at once that PC turns any inconsistent
theory into a trivial one in view of the theorem p o(~p oq). As
several theories are inconsistent and as our beliefs are inconsistent
most of the time, PC-fanatics get a hard problem here. Of course,
relying on their belief in the consistency of the world, they might go on
claiming that inconsistent theories cannot be true, and hence that
inconsistent sets of beliefs are bound to have false consequences. But’
not only does this reply rest on straightforward petitio principii, even
if they were right that the world is consistent, their reply is missing the
point. Indeed, even if the world is consistent and cven if inconsistent
theories have to be transformed into consistent ones by means such
as, e.g., Rescher and Manor’s machinary (see their (1970)), this does
not help us out in the meantime. As long as we are not able to rework
an inconsistent theory into a consistent one, or to replace it by a
consistent one, rejecting the inconsistent theory leaves us with no
theory at all in the domain.

There seem to be three main sources of inconsistencies. First of all,
inconsistencies may arise from the observational criteria connected
with some theory. This will be the case only if different observational
criteria are available to determine whether, say, some predicate
applies to some object, or also if the predicates for which independent
observational criteria are available are linked with one another by
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means of so-called meaning postulates.(') In such a situation we are
confronted with inconsistent observational reports, and it is not
obvious that the observational criteria may always be adapted in such
a way as to get rid of the inconsistency. As a second case, inconsis-.
tencies may be derivable from a theory together with a set of
observational reports, whereas no inconsistencies arise within the
observational reports. Here we are confronted with a case of («em-
pirical») falsification. Irrespective of the complications discussed by
Quine, Griinbaum, and others, it is obvious that we shall prefer to give
up the theory (or some auxiliary hypothesis), rather than replacing the
logic by a weaker, paraconsistent one; and, by all means, we shall
have to take care that the replacement of the logic by a weaker one
does not eliminate the possibility of falsification. Finally, an incon-
sistency may be derivable from the theory alone, i.e. from the axioms
of the theory by the underlying logic.

The paraconsistent logics studied in this paper seem to be especially
suitable in situations of the first kind. They might be suitable in
situations of the second kind, provided that the possibility of falsifica-
tion is not eliminated. They may also be suitable in the third case, but
I want to add right away some comments in this connection. As I
mentioned earlier in this section I do neither believe in the existence
of «the natural implication», nor in the «One God, one country, one
logic» stuff and nonsense. More especially, in as far as a logico-
mathematical theory is merely an axiomatization of a set of formulas
or sentences, I cannot see why some logic should be excluded a priori
as underlying logic. Indeed, the logic then has to provide merely a set
of rules of inference that lead from axioms to theorems of the theory
(see my (1975b)). A second comment is that the language of a theory,
whether logico-mathematical or «empirical», may very well contain
some implication that is stronger than the material implication of the
logics studied in this paper. In this connection, I do not see any
objection to extending these logics by introducing one or more, say,
relevant implications. One of the merits of the present logics is that
they are merely concerned with «what is the case» according to some
inconsistent theory — a merit not shared by relevant or modal logics —

(*) See also section 10. Such situations also give rise to vagueness ; see da Costa and
Wolf (1980). - ’
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but this does by no means exclude that modal or relevant impliéati_ons
would belong to the vocabulary under consideration.

2. Preliminaries

In this section I offer a number of preliminary remarks that will
facilitate the discussion in the following sections. I also list a number
of definitions ; the reader might skipp these, and look them up later as
they are needed.

Whether a logic is paraconsistent or not will depend on the set of
inferences that are correct according to this logic. However, it is quite
standard to characterize a logic by an axiomatic system or a semantic
system, and neither of these does determine all by itself a set of rules
of inference. Notice indeed that such «deduction rules» as Detach-
ment are not rules of inference. Detachment enables us to derive
theorems from other theorems ('If — A and (A o B), then +B."), but
not to derive sentences from other sentences, as does the «rule of
inference» 'From sentences p and (p ©q), infer the sentence q.' (This
distinction between 'rule of inference’ and 'deduction rule’ is not
standard, but 1 shall consistently keep up with it in this puper.)
Returning to the main point, in order to determine the set of inferences
that are correct according to some logic, we necd. ¢ .t from a
semantic or axiomatic characterization, some rule that connects
theorems or valid formulas to correct inferences. In this connection I
shall follow the traditional conception according to which (2.1) holds if
and only if (2.2) is a theorem, respectively valid, where '’ denotes
the (or the main) implication of the language schema.(?)

(2.1) From sentences A,, ..., A,, infer sentence B.
2.2) A, oA, D...(A; 2B)...)

3) For logical systems not containing an implication, some other conception has to
be employed, e.g.: first define ar-A or a=A, and then link (2.1) to it. Several

definitions in section 2 presuppose. the choice of some such conception. but not a
specific one.
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In my (1975b) I have argued that the traditional view is mistaken, but
the point I tried to make there is not essential to the present discussion
of the paraconsistency of a logic.

I first present some definitions that concern sets of wifs and sets of
sentences. I shall use © as a variable for unary connectives. The set of
sentences of a given language will be denoted by S, the set of wffs of a
given language schema by F. A and k=LA or — A and = A in case no
ambiguitiy can arise, denote as usually that A is a theorem, respec-
tively a valid wff, of L.

Definition: Cny (o), the consequence set of a, is the set of all A that
may be inferred (in the above sense) from members of «
according to L.

wherein Cny () is a subset of S iff o is so, and is a subset of F iff a is

so.

Definition: a is A-trivial iff all wifs, respectively sentences, of the
form (®) A are members of «, v

Definition: a is negation-trivial iff it is Op-trivial and C is the main
negation of the language schema.

In the systems studied in this paper | alwéys consider ~ as the main
negation.

Definition: « is trivial iff it is p-trivial.

That is, iff a = S, respectively a = F.

Definition: a is O -consistent iff, for all A, either A¢ o or A a.

Definition: a is consistent iff it is O-consistent and 9 is the main
negation of the language schema. :

Definition: A theory is a couple <a, L>, wherein a is a set of
sentences (the nonlogical axioms of the theory) and L is a
logic (determining a set of rules of inference).

Convention: A theory <a, L> will be said to be (...-)trivial, respec-
tively (...-)consistent, iff Cny (q) is so.

Convention: A valuation v will be said to be (...-)trivial, respectively
(...-)consistent, iff {A/v(a) = 1} is so.

(®) A logical form (with respect to a language schema) is characterized by an
expression containing only variables and logical constants,
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Notice that I do only consider two-valued valuations, with 1 as the
only designated value.

The following definitions concern logical systems. I always suppose
that an axiomatic as well as a semantic characterization is available.
Convention: A logic L will be said to be (...-)trivial, respectively

(...-)consistent, iff {A/FA} is so.
*Notice that any logic which contains the rule of Uniform Substitution
is A-trivial for any theorem A.
Definition: A logic L is A-destructive from aiff (i) i A, (ii) for at least
some B of the form A, B ¢ a, and (iii) for any B of the
form A, B € Cn, (0).

An example will clarify the matter. The three-valued logic
o.]123 I ~. displayed in the figure is paraconsistent in
that p o(~p >q) is not a theorem. Further-

*T1123]3 more, this logic is (qV ~q)-destructive from
2111312 {p, ~p}, for po(~p>(qV ~q)) is a theorem
31100l and qV ~q is not. As a consequence, all sen-

tences of the form qV ~q are theorems of
Vil 23 any inconsistent theory of which this logic
' is the second member. It follows that this

1{111 logic, although it is paraconsistent, is not fit -
21122 to be used as underlying logic of inconsis-
31123 tent theories, The distinction between the

theorems of some theory and the theorems of the underlying logic
makes sense, among other things, because we want a logic to
describe which logical forms guarantee truth. The factual truth of
some sentences should not mess up this distinction, and hence
should not lead to the truth of all sentences of some logical form.
(There is, of course, nothing wrong if all sentences of some non-

logical form are theorems of some theory without being theorems of
the underlying logic.)

Definition: A logic is negation-destructive iff it is Pp-destructive from
{q.Pq} and © is the main negation of the language
schema,

Johansson’s minimal logic and Curry’s system D are negation-des-
tructive.
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Definition: A logic is destructive iff it is p-destructive from {q,2q}
and Y is the main negation of the language schema.

PC and the intuitionist propositional calculus are destructive.

Definition: A logic is B-paraconsistent iff it is not p-destructive from
{9,7q}. '

Definition: A logic is paraconsistent iff it is not destructive.

In other words, if L is paraconsistent, then at least some inconsistent
theories of which L is the underlying logic are nontrivial. Johansson’s
minimal logic, Curry’s system D, Anderson and Belnap’s systems E
and R, da Costa’s calculi C,(1<n<w), etc., are paraconsistent
logics. It is interesting to introduce some stronger notions.

Definition: A logic L is strictly O-paraconsistent iff there is no wif A
such that L is p-destructive from {A, A}.

Definition: A logic is strictly paraconsistent iff it is strictly O-
paraconsistent and © is the main negation of the language
schema.

Definition: A logic is logically conservative iff for any A and for any

' a, it is not A-destructive from a.

If L is logically conservative, then Cng (o) is not trivial unless « is
trivial. Any logically conservative logic is strictly paraconsistent (and
is strictly P-paraconsistent for any ), and any strictly (C-) paraconsis-
tent logic is (P-) paraconsistent. It should be clear by now that the
question as to whether some logic is fit to serve as underlying logic of
a given theory depends in part on the question whether this logic is
logically conservative, strictly B-paraconsistent, or S-paraconsistent.

Definition: A logic is regular iff all its theorems are PC-theorems.

Definition: L is a maximal (regular and) (strictly) paraconsistent logic
iff L is (regular and) (strictly) paraconsistent and no
extension of L is so.

In the introduction I referred to logics that are as close as possible °
to PC, but'do not presuppose that the world is consistent. In order to
make sense of this notion, I present some definitions concerning
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two-valued semantic systems. The meaning of some terms defined
below is more restricted than their standard meaning.

Definition: A propositional logic is extensional iff it may be charac-
terized semantically by a set V of valuation-functions
such that (i) = A (A is valid) iff, forallv e V, v (A) = 1,
and (ii) V is defined by a set S of clauses one of which is
'v:F— {0,1}’, whereas all others are of the form _
Ifv(A,) = m;and ... and v(A;) = m;, then v (B) = m,,.
in which (ii/i) any m;(1<i=<n+ 1) is either 0 or 1, (ii/ii)
n>0, and (ii/iii) no clause arrived at by dropping some
conjunct from the implicans of this clause, is derivable
from the members of S.
Notice that (ii/ii) and (ii/iii) are added in order to prevent that an
axiom A would simply be turned into the clause "v(A) = I'. It follows
from the definition that an extensional propositional logic may be
characterized by a semantics (i) that does not refer, e.g., to possible
worlds, (ii) according to which the value assigned by some valuation
function to some wif does not depend on any value assigned by some
other valuation function, and (iii) according to which any clause of the
form 'for all v, v(A) = 1’ or *for all v, v(A) = 0’ is derivable from
clauses of the form mentioned in the definition.

Definition: A variable A occurs essentially in a wif B iff A occursin C
whenever, for all v, v(B) = v(C).

that is, iff A occurs in all wffs that are semantically equivalent to B.
The definition of a material propositional logic is arrived at by

adding the two following conditions to the definition of an extensional

‘propositional logic:.

(ii/iv) each variable that occurs in some A;, occurs essentially in B.

(ii/v) each A, is a subformula of B.

This eliminates such clauses as "If v(~A) = I, then v(~A & B)) = I".
The definition of a quasi-material propositional logic is arrived at by
adding to the definition of an extensional propositional logic the
condition (iifiv) together with the condition that the logic is not
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material. This eliminates such clauses as 'If v(~A) = 1, then v (~B) =
1'. If a logic is quasi-material, then the value assigned to some wif A
by a valuation function v depends entirely on the values assigned by v
to wffs that contain no other variables than those occurring in A, Ifa
logic is material, than the value assignéd to A by v depends only on
values assigned by v to subformulas of A. It will turn out that maximal
regular and paraconsistent logics are either strictly paraconsistent or
material, but not both.

Notice that any valuation-function may be seen as corresponding in
an obvious way to a possible world. If a semantics excludes, for any
A, that v(A) = v(~A) = 1, then I shall say that there are no
inconsistent (possible) worlds according to this semantics, or, alter-
natively, that it presupposes that the (actual) world is consistent.

3. The basic logic P1

PC presupposes that the world is both consistent and complete.
This is expressed semantically by the clause

vi~A)=1iff v(A) =0

i.e. either A or ~A is true (completeness) and one of them is false
(consistency). If we drop the presupposition that the world is consis-
tent by weakening the aforementioned clause, then we arrive at a logic
which I shall call PI (it is as PC except for not excluding inconsistent
worlds). This logic has the same wiffs as PC and is characterized
semantically by the following clauses:

C0 v:F—{0,1}

Cl If v(A) =0,thenv(~A) =1

C2 v(A>B)=1iff v(A)=0o0or v(B) = 1
C3 v(A&B)=1iff VIA)=v(B) =1

C4 v(AVB)=1iff v(A)=1lorv(B) =1

Validity is defined in the usual way. We shall take equivalence to be
defined syntactically:

DEqu=df(p3q)&(qu)
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One might of course also introduce this connective by means of a
semantic clause, and this would result in a weaker system, but I did
not find any advantage in this complication. Notice also that we would
get a stronger system if disjunction were defined by (pVq) =4
((p ©>q) oq). Indeed, the corresponding equivalence is Pl-valid, but,
e.g., ~(pVq@ =~((p >q) >q) is not; notice indeed that v(~A) =
. v(~B) does not follow from v (A) = v (B). As I shall show later, some
interesting PI-extensions are not extensions of the stronger system.
- The following axiomatic system will be referred to as PI (this name
is also used for the logic axiomatized by this system). It is an
axiomatic system for PC* (the o — & — V —fragment of PC)(%) to
which the law of excluded middle is added (taking care of the
completeness of the considered worlds).

Axioms

PIA1 p>(q>p)

PIA2 ((p>q)>p)>p

PIA3  (p>q)2((q>r) 2(p>1))
PIA4 (p&q)>op

PIAS (p&q)>q

PIA6 p>(@>(&q))

PIA7 p=>(@VQ

PIAS g>(pVaq)

PIAS  (po2n>((gq2r)>((p Vg >1))
PIAI0 pV~p

Rules : Modus Ponens and Uniform Substitution.

I list some metatheorems on PI and Pl-extensions.

Theorem 1. If o+ A, then o= A (soudness).
Proof: as for PC.

" Theorem 2. If al=A, then ar A (strong completeness).
Proof: see the appendix.

() PI" should not be confused with the positive Logik presented by Hilbert and
Bernays (1968); the latter system is weaker, e.g., in that PIA2 is not a theorem of it.
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Theorem 3. Pl is decidable. ’
Proof: a simple truth-tabular method derives from the semantics. (%)

Lemma 1. The system resulting from adding (p & ~p) >q as an axiom
to PI is (an axiomatization of) PC,

Proof: all axioms and (trivially, also the rules) of Hilbert and
Bernays's PC-axiomatization are derivable from this system.

Lemma 2. The rule of replacement of equivalents, henceforth called
EQ, is not derivable in PI.
Proof: ~p=~p and p=(p & p) are Pl-valid whereas ~p=~(p&p)
is not.
Lemma 3. EQ, restricted to wifs outside the scope of a negation-sign
is derivable in PI.
Proof: as for PC.

We now define two special kinds of conjunctive normal form. A wif
A is in CNF iff it is a continuous conjunction B; & ... & B,, in which:
each B; is either of the form (D,V...VDy) or of the form
(Ci&... Cy) o (Dy V... D), each C, and each D, being either a
variable or of the form ~ E. A wff A is in CNF® iff it is in CNF° and
no B, is a PI-theorem. '

Lemma 4. Any wif is Pl-equivalent to a wff A which is in CNFe,
Proof: from Lemma 3 and the following equivalences:

3.1 (p2q)2r)=((pVr&(q>r)

G2 (((P29&D)>8)=(r>(Vs))&((q&T) >5))
G3) (PVY&)Ds)=(((p&1)D5)&(q&T) O5))
B4 (pVy2)=((p>or&(q>r)

(3.5) (p>@>n)=((p&q) >r)

(3.6) P>2@&n))=((p>9&(>r))

G.7 ©P>2(@>)Vs))=((p&q) D(rVs))

3.8  (P>((@&1r)Vs))=((p>o(qVs))&(p (@ Vs)))
39 ((p>29VD=(>(qVr)

(B.10) (P&QPVD=((pVr&(qVr))

Corollary I. Any Pl-non-theorem is Pl-equivalent to a wff which is in
CNFeo,

(®) An easy such method goes as follows ; first write down all possible assignments of
ones and zeros to all subwffs, and next delete those assignments that do not agree with
the Pl-semantics.
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In the following lemmas and corollaries PI* is either PI or an
extension of PI, The proof of lemmas 5 and 6 is obvious. Consider any
two-valued PI*-semantics that agrees with all clauses of the PI-seman-
tics.

Lemma 5. PY%is trivial iff all valuation functions of the PI*-semantics
are trivial.

Lemma 6. PI* is negation-trivial iff all valuation functions of the
PI*-semantics are negation-trivial,

Lemma 7. 1f PI*is either material or quasi-material and if, for some A,
it is A-destructive from {B, ~ B}, then v(B& ~B) = 0 for all
nontrivial PI*valuation functions v.

Proof: suppose that PI* is either material or quasi-material, that it is
A-destructive from {B, ~ B} (for given A), and that there is a
non-trivial v such that v(B& ~B)=1. As A is PI*invalid and the
number of variables in B is finite, some ‘wff of the form A, say D, is
invalid and does not share any variable with B. Consequently, for
some PI%valuation function v, v/(D) = 0. As B and D do not share
any variable and neither v nor v’ is trivial, it follows from the
definition of 'material logic’ and ’quasi-material logic’ that there is a
v" that assigns to B & ~ B the same value as v and to D the same value
as v'. Hence v’ ((B & ~B) oD) = 0. But as PI*is A-destructive from
{B, ~ B}, V((B& ~B) ©C) = 1 for all C of the form A and for all
PI*-valuation functions v. Hence, v'((B& ~B)>D) = 1. As the
supposition leads to a contradiction, the lemma holds true.

Corollary 2. If PI*is material or quasi-material and, for all B, there is a
nontrivial PI%-valuation function v such that v(B & ~B) = 1, then PI*
is strictly paraconsistent. .

Lemma 8. If PI* is material or quasi-material and if it is destructive,
then, for some B, v(B& ~B) = 0 for all nontrivial PI*-valuation
functions.

Proof': trivial in view of the preceding lemma.

Corollary 3. If PI* is material or quasi-material and, for some B and
some nontrivial PI*valuation function v, v(B & ~B) = 1, then PI* is
paraconsistent.
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Lemma 9. If PI” is material or quasi-material and, for all B, there is a
nontrivial PI*valuation function v such that v(B) = 1, then PI* is
logically conservative.

Proof: the nonobvious part is wholly analogous to the proof of Lemma
7. ’

Corollary 4. If PI* is material or qua'si-material_, then it is strictly
paraconsistent iff it is logically conservative.

Theorem 4. PI is material.
Proof: trivial

Theorem 5. Pl is logically conservative (hence strictly paraconsis-
tent).

Proof: by induction on the length of formulas, from (i) lemma 9, (ii) for
any formula A, there is a nontrivial valuation-function that assigns the
value 1 to all variables occurring in A, and (iii) no clause of the form *'If
v(A;)) = ... v(A,) = 1, then V(B) = 0 is derivable from the
PI-semantics.

4 Disjunctive syllogism

Disjunctive syllogism is the béte noire of relevant implication. I
shall distinguish between the wif (4.1), the deduction rule (4.2), and
the rule of inference (4.3), from which (4.4) follows.

4.1 G@Va&~p)>oq

4.2) If~AvBand —~A, then—B

4.3) From (premisses of the form) pVq and ~p, infer (the

‘ conclusion of the form) q. : :

4.4 For all theories T = <a, L>, if (pVq) eCn.(a) an
~p €Cny (0), then q €Cny (a).

Let us first consider (4.3). With respect to a consistent world this
rule of inference is correct if disjunction and negation are interpreted
in the usual way. The argument goes as follows. If ~p is true and
either p or q is true, then either p and ~p are true or ~p and q are
true. As the world is consistent, it is impossible that p and ~p are both
true; consequently ~p and q are true, and hence q is true. In an
inconsistent world, however, it is quite possible that p and ~p are -
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both true, and hence there is no way to derive g. I realize quite well
that some who subscribe to the Anderson and Belnap position on
entailment will balk at the argument for the validity of (4.3) in
consistent worlds, but I want to point out that the proof presented by
Anderson and Belnap (1975, 300-301) may be turned easily into my
very argument that q is true in all consistent worlds in which both
pVqand ~p are true.

From the incorrectness of (4.3) with respect to inconsistent worlds,
it follows immediately that (4.1) is not generally true in such worlds,
and hence should be invalid in a logic that does not. presuppose the
_ consistency of the world. Furthermore, the system arrived at by
adding (4.1) as an axiom to Pl is destructive. Notice indecd that
(p & ~p) = q follows by the (Pl-derivable) rule of transitivity from (the
Pl-theorem) (p& ~p) 2 ((p Vq) & ~p) and (4.1). As a consequence
neither PI nor any of its paraconsistent extensions have (4.1) as a
theorem. ' :

(4.2) is trivially true about PI for the simple reason that no

Pl-theorem is of the form ~A. However, (4.2bis) is false about PL.
(4.2bis) If - A and — ~A VB, then —B.
Indeed, both po>p and ~(pop)V~~(p>p) are Pl-theorems,
whereas ~ ~ (p op) is not. On the other hand, both (4.2} and (4.2bis)
are derivable in some paraconsistent PI-extensions, €.g., in PI" (see
Theorem 23). That this is so is immediately connected with the fact -
that PI" is not strictly paraconsistent (anything is PI'-derivable from
certain contradictions). This, however, does not make PI" any less
paraconsistent (simpliciter); some inconsistent theories of which it is
a member are non-trivial. Still, the corresponding rules of inference —
one of them is (4.3) — are incorrect according to PI". (°)

() These rules are even incorrect in the trivial sense that they are not derivable in
general for theories of which PI' is a member, irrespective whether rules of inference
are derived in the Anderson and Belnap way, i.e. as corresponding to derivable
deduction rules, or with respect to theorems of the logic under consideration (see
section 2).
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5. Some further Pl-non-theorems

The addition of any of the following wffs as an axiom to PI results in

a system which is either destructive or negation-destructive. I leave
the easy proofs to the reader.

(5.1)  p>(~p>q)

(5.2 (~pVa)2(p>q)
53) (P>9&~q)>~p
(54 (>0 >(~q>~p)
5.5 (>@&~q)>~p

There are several «variants» to thege PC-theorems, e.g., the trans-
position-variants to (5.4) and the variant (p Vq) >(~p Dq) to (5.2).
The addition of any of these as an axiom to PI results in a destructive
or negation-destructive system. AT :

Itis not difficult to see why, on the usual interpretation of the binary
connectives, the rules of inference that correspond to (5.2)-(5.5) are
correct with respect to consistent worlds, and hence for (true) theories
about such worlds, but are incorrect with respect to inconsistent
worlds, and hence for (true) theories about these. The fact that 5.1),a
well-known «paradox of implication», is not a theorem of any
paraconsistent PI-extension shows that the theoremhood of this wff in
PC is not merely a consequence of the meaning of the implication, but
also and essentially of the meaning of the negation, i.e. of the
consistency presupposition. The fact that (5.2) is not a theorem of any
paraconsistent Pl-extension, although its converse is a Pl-theorem,
explains, e.g., why the correctness of modus ponens according to PI
does not result in the correctness of disjunctive syllogism according to
PI. Finally, it seems worth mentioning that such Pl-theorems as (5.6)

and (5.7) are usually «justified» with reference to respectively (5.5)
and a variant of this PC-theorem.

(56) (P>~p)>~p
(5.7 (~p>op)op

It goes without saying that these are «justifiable» by other means in
- Pl, e.g., with reference to the law of excluded middle PIA10 and’
(simple) constructive dilemma, rendered here in its exported form:
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(5.8 (pVa)>((p>r)>((gor) or))

If in (5.3)—-(5.5) the horseshoe is considered as denoting a relevant
implication (usually expressed by an arrow), then these wiffs turn out
to be theorems of numerous relevant logics, e.g., Anderson and
Belnap’s logics R and E and Routley and Meyer’s dialectical logics
DL and DK. There is nothing paradoxical about the fact that these
logics are nevertheless paraconsistent, their implication being much
stronger than the Pl-implication.

It seems to me, however, that especially (5.3) and (5.4) are
objectionable as theorems of paraconsistent logics, and this irrespec-
tive the strength of the implication. In the presence of modus ponens,
(5.4) leads to the rule of inference 'From A B and ~B to infer ~ A’
and (5.3) leads to the same rule in the presence of modus ponens and
conjunction. I shall now present an argument against this rule.
Suppose indeed that, according to some theory, a is black if it is a
raven and suppose this sentence is «synthetic» in that it does not
derive from the meanings of 'black’ and 'raven’. Suppose furthermore
that a turns out to be a raven and to be black and not to be black (this
is a kind of example people interested in dialectical logics have in
mind — see da Costa and Wolf (1980)). According to the aforemen-
tioned rule, viz. modus tollens, it follows that a is not a raven. But of
course, this is wrong and shows that modus tollens is not correct here.
It is indeed quite possible that the predicate 'raven’ behaves consis-
tently, even if a is black if it is a raven and if the predicate 'black’
behaves inconsistently.

Proponents of the aforementioned paraconsistent logics might try to
find a way out of this objection by claiming that the implication in 'a is
black if it is a raven’ is not a relevant implication, or by all means not
the relevant implication of their systems, but some weaker implica-
tion. Notice, however, that this implication should guarantee the
application of modus ponens, whereas none of the aforementioned
logics contains an implication for which modus ponens is correct and
modus tollens is incorrect. '

Richard Routley (1979, 305) claims that «the weakened negation
systems lack all forms of contraposition, though surely some are
correct, and indeed there is little basis for regarding the so-called
negations of these systems as genuine negations at all rather than,
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say, positive modal connectives, e.g. weird truth or necessity con-
nectives» (my italics). The argument in the preceding paragraphs
purport to show that Routley’s intuitions on the matter are wrong (it is
indeed easy to find counterexamples to the other forms of transposi-
tion). Also, other authors seem to have different intuitions, for da
Costa and Wolf (1980) write: «we"'would not find any intuitive
justification for contraposition». Finally, I really cannot see the point
of Routley’s claim. I must confess that I have (distinct) intuitions on
several kinds of «negation», that I consider it interesting to study
some of them, that I presume that some are useful in certain contexts
whereas others are useful in other contexts but that I do not see any
point in finding out which are «genuine» negations and which are not.

6. Strictly paraconsistent Pl-extensions containing PC

Amazing as it might seem to be, PC is a fragment of several
extensions of PI, and this not withstanding the fact that the Pl-impli-
cation is plainly material and that modus ponens holds for it. This
result might be interesting in view of the arguments offered by, e.g.
Richard Routley (1979), in favour of the position that sound dialectical
logics should contain all PC-theses. There is a second reason why this
result is worth being mentioned. PC is a fragment of E as well as of
several paraconsistent logics devised by Routley and Meyer (see their
(1976) for DL and Routley (1979) for DK). Some readers might
suppose that this is in some or other way dependent on the fact that
modus ponens holds in such logics with respect to relevant implication
only. As follows from the present results, this is a mistake.

A weak PI-extension, let us call it PI*, of which PC is a fragment is -
obtained by adding the two following axioms to PI:

PI*Al pD~~p
PI*A2 ~p>(~q>~(pVQq)

The PI*-semantics is obtained by adding to the Pl-semantics ():

Cs If v(A) = 1, then, v(~~A) =1
Cc7 If v(~A) = v(~B) =1, thenv(~(AVB)) = 1

(") That this is so is trivial in view of the results mentioned in the appendix.
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Theorem 6. PC is a fragment of PI*,

The proof proceeds in exactly the same way as Anderson and
Belnap’s proof (1975, 283 ff.) that PC is a fragment of E. (All axioms
of their PC-axiomatization are theorems of PI* and their rules are
derivable in it.)

In other words, the V— ~—fragments of PI* and of PC are
identical, and since this fragment is functionally complete in PC, we
may define ad hoc connectives &°, ©° and =° in PI*, arriving in this
way at the full PC. Hence the PI*-theorems:

(6.1) ~(p&°~p)
(6.2) (p&°~p)>°q

the last theorem being harmless in view of the fact that modus ponens
is not derivable for =¢ in PI*. This connective is simply not an
implication in PI*, but a kind of disjunction. Incidently, Anderson and
Belnap have claimed ad nauseam (as they notice themselves) that
material implication (in general) is not an implication but a kind of
disjunction. By this they mean that material implication does not
capture the non-corrupted intuitions on «follows from» and that it is
wrong that «detachment for material «implication» is a valid mode of
inference» (1975, 165). My statement that =¢ is not an implication has
a quite different status; it simply refers to the fact that q may be false
if both p and (p ©°q) are true. This is immediately clear from the ~
PI*-semantics, and there is not the faintest paradox about it (see also
section 4).

The reader will wonder whether there are also paraconsistent
Pl-extensions the & — V — ~ — fragment of which is identical to that
of PC, and indeed there are. I shall mention at once a very strong such
extension (3), which I shall call PI* for reasons that will become clear
later on. It is defined syntactically by adding to PI*(%):

(®) A syntactical characterization of a weaker such extension is obtained by adding
D & (see some lines below this note in the text) to PI*. (Notice that PIA4-PIA6 contain
defined conncctives in this case.) That PI* + D & is paraconsistent follows from the fact
that the stronger PI* is so.
(*) An alternative (and more elegant) axiomatic system for PI® is obtained by dddmg
PI*A1 and PI*A1 to P, together with:
PFA2 ~(pVQ=(~p&~q)
PPAY  ~(p&q)=(~pV~q)
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PIA 1L ~(p2q)=(p& ~q)
PI*'A2 ~(pVqQD(~p& ~q)
D& p&q=4~(~pV~q

and is characterized semantically by adding to the PI-semantics('%):

Cs V(~~A) = V(A) '
Cé6* v(~(ADB)) =v(A& ~B)
Cr v(~(A&B)) = v(~AV ~B)
cs* vV(~(AVB)) = v(~A& ~B)

Notice that (6.3) is a theorem of PI* (US in PI*A2). By substituting
in the PC*-theorem (6.4) we obtain, by MP, (6.5). From this follows
(6.6) by D &, and from (6.6) and the PC*-theorem (6.7) we get (6.8) by
transitivity.

(6.3) ~~pD(~~pD~(~pV~p))
6.4 (P>2p29)>(p>9

(6.5) ~~pD~(~pV~p)

(6.6) ~~p>(p&p)

6.7 (p&p)>p

6.8) ~e~pDp

The converse of (6.8) is a PI*-axiom. Notice also that the converse of
PI*A2 follows from PI*A2 by importation. Finally, notice that D &
cannot be replaced by the corresponding equivalence, because the
rule of replacement of equivalents is not derivable in PI* (see
Corollary 8) and the addition of this rule results in a logic which is not
paraconsistent (see Theorem 13).

PI® is equivalent to the system obtained by dropping from Schiitte’s
@, (see his 1960)) the propositional constant A (which may be
looked upon as the conjunction of all wffs). Schiitte’s system was
published in 1960, and he does not refer to other forerunners of
paraconsistent logic. PI® is an important system, among other things
because it is a regular maximally paraconsistent Pl-extension (see
Corollaries 6 and 7). I now turn to its metatheory.

('% An alternative PI’-semantics is arrived at by dropping C3 from the Pl-semantics
(conjunction being considered as defined explicitly) and by adding C5 and:
C7° v(~(ADB))=1iff v(A)=v(~B)=1
C8° vi(~(AVB))=1iff v(~A)=v(~B)=1
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Theorem 7. P’ is consistent and strongly complete with respect tb‘fhei:f:f%ﬁ,
PI*-semantics. ek

Proof: see the appendix.

Theorem 8. PI® is decidable.
Proof:: the semantics corresponds to a truth-tabular method. ('"

Theorem 9. PI® is logically conservative (hence strictly paraconsis-
tent).
Proof: wholly analogous to the proof that Pl is logically conservative,

Theorem 10. PY is quasi-material.

Proof: That PI* is not material follows from the fact that the
restrictions on the value of, e.g., ~(p & q) cannot be expressed by
referring to the values of p and q only. The rest of the proof is trivial.

Lemma 10. Any wff is PI*-equivalent to a wff in which all negation
signs occur in front of variables.

Proof: trivial in view of Lemma 3 and the following PI*-equivalences:
(6.9 ~~p=p

(6.10) ~(p2q=(p&~q

6.11)  ~(ppVvVg=(~p& ~q)

(6.12) ~(p&q=(~pV~q)

I now define two further kinds of conjunctive normal forms. A wff is
in CNF iff it is in CNF° and each C; and each D, (see the definition of
CNF") is an atom (either a variable or the negation of a variable). A~
wif is in CNF* iff it is both in CNF* and in CNF®,

Lemma 11. Any wff is PI*-equivalent to a wff which is in CNF*.
Proof: from Lemma 10 and Lemma 4.

Corollary 5. Any PI*-non-theorem is PI*-equivalent to a wff which is
in CNF*,

Theorem 11. If a PC-theorem A is not a PI*-theorem, then the system
resulting from adding A'as an axiom to PI® is equivalent to PC.
Proof. Suppose A is a PC-theorem and not a PI*theorem, and let

(*") First write down all assignments of ones and zeros to all subwffs and to. all
negations of subwffs, next delete the assignments that do not agree with the PI*-seman-
tics. ’
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PI* + A = PI%. It follows from Corollary 5 that at least some wif B of
either of the following forms

(6,13) D,v... VDk
6.14)  (C&..&Cp) >(D, V... VD)

in which each C, and D, is an atom, is (i) a PC-theorem, (i) -

PI*-theorem and (iii) not a PI*-theorem. As the V — ~ — fragments of

PC and PI* are identical, B must be of the form (6. 14). From the fact

that B is not a PI*theorem we derive: (i) no D; and D; are such that

D, = ~D,, (ii) no C; and Dy are such that C; = D;. Trivial considera-

tions on PC-truth-tables tell us that under these conditions thereis a C;

and a C; such that C; = ~ C;. Consequently, the following substitu-

tions can consistently be performed: .

— if C; is a variable that does not occur in the implicatum, substitute p
for this variable,

— if C, is a variable that occurs in the implicatum, substitute ~q for
this variable,

- if C; is the negation of a variable that does not occur in the
implicatum, substitute p for this variable,

— if C; is the negation of.a variable that occurs in the implicatum,

" substitute q for this variable,

— if D, is a variable, substitute q for it, and .

— if Dy is the negation of a variable, substitute ~q for it.

It is readily seen that the result of these substitutions is PI*-equivalent

to (p & ~p) ©q. Hence this wif is a PI*-theorem.

Consequently, by Lemma 1, PI* is equivalent to PC.

Corollary 6. PP is a maximally regular paraconsistent logic.

Theorem 12. If A is not a PC-theorem, the system resulting from
adding A to PI® is trivial. '
‘Proof: Suppose that A is not a PC-theorem and that PI* = P+ A. It
follows from Corollary 5 that at least some wff B of the form of (6.13)
or (6.14), in which each C; and D; is an atom, is a PI*-theorem and not
a PC-theorem. First case: let B have the form (6.13). As B is not a
PC-theorem, there are no C; and C; such that C; = ~ C;. Hence the
following substitutions can consistently be performed:

— if C, is a variable, substitute p for it, and

— if C, is the negation of a variable, substitute ~p for this variable.
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The result is readily seen to be PI*-equivalent to p. Hence p is a
PI*-theorem ; hence PI* is trivial. QED. Second case: let B have the
form (6.14). From the fact that B is not a PC-theorem we derive (i) no
Ci and C; are such that C; = ~ C,, (ii) no D, and D; are such that D; = ~
D;, and (iii) no C, and D; are such that C, = D;. Under these conditions
the following substitutions can consistently be performed:

— if C; is a variable, substitute ~p for it,

— if C; is the negation of a variable, substitute p for this variable,
—'if D; is a variable, substitute p for it, and

— if D; is the negation of a variable, substitute ~p for this variable.
The result is readily seen to be Pl-equivalent to p. Hence p is a
PI*theorem. Hence PI* is trivial, QED.

Corollary 7. PI® is a maximal paraconsistent logic.

Theorem 13. The addition of the rule of replacement of equivalents to
PI* results in PC.

Proof. First notice that ~~(p >q)=~(p& ~q) is PI*-invalid and
hence not a theorem of PI*, but that it is derivable in PI* by means of
the rule of replacement of equivalents. From this the theorem follows
in view of Theorem 11.

Corollary 8. The rule of replacément of equivalents is not derivable in

"PIs. . '
In justification of a claim made in section 3 I now prove:

Theorem I14. The addition of (p V q) =4(p 2q) 2q) to PI* results in

PC.(!?»)

Proof. The following series of wffs is a proof in PI°+ DV(the

aforementioned definition):

(6.15) ~(~pV~q)op PI*-theorem

(6.16) ~((~p>~q)>~q)>p Dv

The latter wff, however, is PI*-invalid, and, hence, not a PI*-theorem.
Consequently, in view of Theorem 11, PI*+ D V = PC.

The system A of S.K. Thomason (197 +) is a sybsystem of PI¥,
arrived at by a simple restriction on the wifs. The set of A-wffs may be
defined as follows: (i) A is a pre-wff of A iff it is a wif of the

('*) The disjunction sign occurring in the axioms is then to be considered as defined.
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& — V — ~—fragment of PC, (ii) A is a wif of A iff it is of the form
B >C and both B and C are pre-wffs of A. In view of the semantic
characterizations of A and PI® it is obvious that A is a A-theorem iff it
is a A-wff and a PI*-theorem.

7. Material Pl-extensions containing 'PC

The logics studied in the preceeding section are strictly paracon-
sistent, but neither of them is material. A weak material Pl-extension,
let us call it PI°, is arrived at by adding to PI:

PIPA1  (p&q)>(~(p& q) o1)

and to the PI-semantics:

ce™ V(~(A&B))=1iff v(A&B)=0.
If we now define a strong negation:

d™l “Ip=4~(p&Dp)

then we obviously have:

Theorem 15. PI° contains PC. :

Let us pass at once at a very strong such system, which I shall call PI'
because it is nearly identical to V1, a logic forged by Ayda I. Arruda
after ideas on the «imaginary logic» by Nicholas Alexandrovic
Vasil’ev (see Arruda (1977)). The difference between V1 and PI is
that the role played in V1 by the set S of «propositional letters of
Vasil’ev» is played by the set of propositional variables in PI'. PI' may
be characterized syntactically by adding to PI either the axiom
schema

PI'AS A D(~A>B)if A is not a variable
or the following four axioms:

PI'A 1l ~p2D(~~p>Dq)

PI'A2  (pVq@) 2 (~(pVg) 1)
PI'A3 P&go(~(p&q) >r)
PI'A4  (pog)>(~(p>g>D




PARACONSISTENT EXTENSIONAL PROPOSITIONAL Locrrés'@'

Arruda defines the PC-negation as follows (in my notanon)
“Ip=4~p& ~(P& ~p)

This definition is unnecessarily complicated in companson wu
but it is intuitively appealing.
PI' is characterized semantically by adding to the Pl-semant;

Cs' Vi~ ~A)=1iff v(~A)=0

ce' V(~(A&B))=1iff vV(A&B)=0
c7 v(~(AVB))=1iff v(A VB)=0
C8 v(~(ADB))=1iff v(A >B)=0

I refer to Arruda’s aforementioned paper for a detailed study of: PI"
and its semantics. I only mention and add here some metathe
that seem interesting with respect to the kind of mvestlgatlonﬁ
present.

Theorem 16. PI' is consistent and strongly complete with resp"
semantics. '
Proof. See the appendix (see also Arruda (1977,11)).
The proof of Theorems 17-20 is trivial,

Theorem 17. PI' is decidable (see also Arruda (1977, 11- 12))
Theorem 18. PI' is material.

Theorem 19. PI' is paraconsistent but not strictly paraconsxste
Theorem 20. PI" contains PC.

In contradistinction to what holds for PI*, even the V — ~ —frag
ments of PI" and PC are not identical ; PC is arrived at by xdentlfylﬁg
its negation with the defined strong negation of PI". .

I now define: a wif is in CNF" iff it is a continuous conjuric
B;&...&B, in which each B; is a continuous disjunction
C, V... VC, fulfilling the following conditions: (i) each C; is eithei
atom or the strong negation of an atom, and (ii)) no Ci PI"-imp]x
different C; (i.e., (ii/i) if i+j, C;= C;, (ii/ii) where D is a variable,
Ci=D, then no C;= —I D, and (ii/iii) where D is a variable, :if
Ci= ~D, thenno C;= "1D). A wif is in CNF" iff it is in CNFv an
conjunct B, is a PI'-theorem.

Lemma 12. Any wff is PI'-equivalent to a wff which is in CNF
Proof. Trivial in view of Lemma 3 and the following equnvalen
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7.0 A= ~Aif A is compound (not a variable)
(7.2) ~~A=Aif A is compound.

(7.3)  ~~p= l~p

(7.4 ~Tlp=p

(7. (p29)=(1pVq ‘
(7.6) ~po>q9)=(p& lq) .
77  ~pe&g=(1pV g
(7.8) ~@Ve=(lp& g
(7.9) (~pV Ip)=~p

(7.10) (pV 1~p)=p

Corollary 9. Any Pl-non-theorem is PI'-equivalent to a wff which is in
CNF™, g

Theorem 21. If a PC-theorem A is not a PI'-theorem, then the system
obtained by adding A as an axiom to PI" is equivalent to PC.

Proof. Consider a wif which is in CNF* and is equivalent to A. Some
conjunct B;(=C, V... VC,) of this wff is a PC-theorem and not a
PI"-theorem. But then there obviously is a C;, a Cyand a variable D
such that C;= 1D, C;= "1~D and D does not occur in any other C,.
As a consequence, it is possible to substitute p for D and perhaps for
some other variables, and to substitute ~ p for other variables in such
a way that the result is equivalent to ~1pV 1~p. From this
(p& ~p) oqis derivable. Hence the system obtained by adding A as
an axiom to PI" is equivalent to PC (by Lemma 1).

Corollary 10. PI' is a maximally regular paraconsistent logic.

Theorem 22. 1f a wif A which is not a PC-theorem is added as an axiom
to PI', then the resulting system is trivial.

Proof. Consider a wif which is in CNF" and is equivalent to A. Some
conjunct B;(= C, V... VC,) of this wff is not a PC-theorem, and as a
consequence no variable occurs in two different disjuncts C; and C;.
Hence it is possible to perform a number of substitutions such that the

result is equivalent to p. Hence the system obtained by adding A as an
axiom to PI" is trivial. '

Corollary 11. PI' is a maximal paraconsistent logic.
In support of a claim made in section 4 I now prove:

Theorem 23. The rule 'If — A and + ~A VB, then +B.’ holds true
in PI",
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Proof: Suppose that A and +~~AVB. It follows that
v(A)=v(~A VB)=1 for all v. As no variable is a PI'-theorem,
v (~A) =0 for all v. But then, for all v, v(B)=1 and hence ~ B.

I was somewhat amazed to find out that there.is another Pl-exten-
sion which is both a material logic and a maximally regular paracon-
sistent logic (and a maximal paraconsistent logic). This logic, let us
call it PI™, is characterized syntactically by replacing the PI-axiom
PI"A1 by

PI™A L ~~p=p

and semantically by making the analogous replacement. The obvious
reason for the existence of two material PI-extensions which are both
maximally regular, is that A as well as ~ A are parts of ~~A, and
hence that the value of v (~ ~ A) may be determined in two equally
material ways. PI™ is «somewhat more paraconsistent» than PI".

Let us now deline: a wif is in CNF" ilt it is in CNF*: a wil is in
CNF™ iff it is in CNF™ and no conjunct B; is a PI™-theorem. The
analogues of the lemmas and theorems on PI' may easily be proved
for PI™. '

All of Da Costa’s systems C, (1< n < w), studied, e.g. in his (1974),
turn out to be material logics between PI and PI™. For these logics da
Costa and Alves (1977) present a semantics, which contains the
following clause: :

Ifv(B™)=v(A DB)=v(A>~B)=1, then v (A)=0.

At first sight this does not look very material. However, one gets an
equivalent semantics in replacing the clause by the much simpler

VIA™) =1iff v(A)=0or v(~A)=0.

The latter clause is not only more decent, it also shows, unlike the
unnecessarily complicated former one, that the systems C, (I n<®)
are material in view of the following definitions:

A% =y ~(A& ~A)
A" =4 A" (A followed by a times the sign ©)
AP =4 A& ... & A '

Incidently, da Costa’s axiom scheme
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B® 5(A 5B) 5((A > ~B) 5 ~A))
may be replaced by
B®5((B& ~B) 5 A).

As this reformulation makes clear, B expresses that B behaves
consistently ; its behaving inconsistently is sanctionned by triviality.

The system DL of Da Costa and Wolf (197-) is not an extension of
PI (excluded middle fails); the system KP of Apostel (1979) is an
extension of PI but not a sublogic of PI%, PI' or PI™, the specific
axioms of KP containing propositional quantifiers.

8. Some further Pl-extensions

I have been looking for a maximally regular material and strictly
paraconsistent Pl-extension, and | guess that such a system is
characterized semantically by adding to the Pl-semantics:

Cs’ v(~~A)=v(A)

Ce' V(~(A>~B))=v(A&B)
cr V(~(~A& ~B))=v(A VB)
c8’ V(~(~AV ~B))=v(A&B)

I leave it to the reader to find a syntactical characterization of this
logic (trivial in view of the results mentioned in the appendix),
Obviously this logic is regular, material and strictly paraconsistent ; |
have no proof, however, that it is maximally so (i.e. that no extensjon
of this logic is regular and material and strictly paraconsistent).

Let it be noticed also that there are non-regular paraconsistent and
even strictly paraconsistent Pl-extensions. An example of such a logic
is obtained by adding «Aristotle’s thesis», viz. ~(p > ~p) (¢f. Routley
(1979)) to PI. Such a logic might even be material, as may be seen
from the system arrived at by adding to the PI-semantics:

If v(A)=v(B), then v(~A>~B))=1,

I mention this in order to show that Aristotle’s thesis, which seems to-
presuppose at least a relevant implication, may very well be added to
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a system in which the implication is plainly material (and evéri'ta a
material system). The semantic clause mentioned above seems ‘e
intuitively appealing.

Notice that there are also paraconsistent logics in which it is stated
explicitly that at least one contradictory sentence is true, e.g., by
having one of the following as an axiom (where p, is a propositional
constant): . e

8.1) Po & ~Po
. (8.2) (3p) (p& ~p)

ven

Systems containing (8.1) are studied, e.g. by Routley and Meyer
(1976), Routley (1979) and Arruda (1977). The addition of (8. l),or (8.2)
to some logical system may of course have a technical use, e.g., to
show that the system is indeed paraconsistent. It seems to me,
however, that there are philosophical objections against having (8.1)
or (8.2) as an axiom of a logical system as such. That some set of
formulas is correctly considered a logic presupposes, among other
things, that it is closed under substitution for propositional variables;
this is, as Anderson and Belnap (1975, 462) say, «what makes it a
logic». However, if this is correct, it is hard to see how (8.1) may be
considered a theorem of logic. Furthermore, where (8.1) is a theorem
of L, it cannot be related in a meaningful way to a theory T = <a, L>
unless p, is replaced by some sentence of the language in which T is .
formulated. In this case, however, the contradiction should obviously
derive from T and not from L alone. Next, consider a logic L of which
neither (8.1) nor (8.2) (nor something like) is a theorem, and let L’ be :
L +(8.2). If some contradiction is derivable from T = <, L>, then
(8.2) is superfluous anyway ; and if it is derivable from T that there are
true contradictions (even if none is actually derivable from T), then
again (8.2) is superfluous. And there are still further arguments to the
effect that (8.1) and (8.2), whether superfluous or not, are objectiona-
ble in general. Indeed; it is most natural to consider a logic as a theory -
of meaning of certain terms, defining some set of «formally» correct -
rules of inference. A logic may involve certain presuppositions about =
the world or about the domain described by the theory of which the =
logic is an element. PI does not presuppose that the world (or some .
domain) is consistent; it even presupposes that the world is inconsis- =
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tent, in that it is too weak for consistent worlds (it fails to sanctio
certain inferences that are correct with respect to consistent worlds)
These presuppositions are presuppositions of any theory of meanin
of the PI-connectives. But why then should it be added furthermore as
a theorem of logic that the world is inconsistent ? Nothing is added to
the meaning of the connectives as geﬁned by PI or some («normal»)
Pl-extension if (8.1) or (8.2) are taken as axioms; neither do these
have any bearing on the correctness of inferences.(*?)

If an axiomatic system for a paraconsistent logic does not contain
axioms such as (8.1) or (8.2), then there is no reason why disjunctive
syllogism, i.e. (4.2) or (4.2bis), should not be a primitive or derivable
deduction rule, provided that the corresponding rule of inference, viz.
(4.3), does not hold.

Finally, it is obvious that PC can be combined with PI and with any:
of its extensions (and not only with those that already contain PC) in
the following way. Let PIC be PIA1-PIA9 together with

PIA 1O “Ipo~p
PCALl pVvVlp
PCA2 (p& 1p) =q

and the rules of modus ponens . and uniform substitution. The
~—>—& — V~—fragment of PIC is PI, the "1- 5—& — V ~frag-
ment is PC. The semantics is arrived at by adding to that for PI:

C7 v(T1A)=1iff v(A)=0.

(see the appendix). Any Pl-extension can be combined with PC in the
same way.

9. System with explicit truth-predicate — the primacy of consistency

Let Vp express that p is true (V from the Latin verum’). The set of
wifs of the system V is the smallest set S such that (i) if A is a
PC-wiff, then VA €8, The set of V-theorems is the set of V-wifs
that are PC-theorems (where PC is trivially extended to V-wffs).
Consider now the following definitions and axiom:

(*3) The same objection does not apply to the use of the logical constant f in systems
in which f may be interpreted, e.g., as the conjunction of all sentences.
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Dvo Vo9 =4Vp>Vq

DV& Vp&q)=4Vp& Vq
DV V V(pVg=4VpVVq
DV ~ V ~p=4~Vp
VIAL ~VpoVa~p

The systems VC and VI are as follows:

VC=V+DVo+DV&+DVV+DV~
VI =V+DV>o+DV& +DVV4+ VIAL

We then have: . Aiff o VA and i, Aiff i VA,

Whereas V is obviously redundant in VC, it is not in VI, Still, VC
enables us to clarify the relation between PC and PI. First of all, the
same notion of truth (in the sense of V) underlies PC as well as Pl
Next, the difference between DV ~ and VIA1 expresses exactly the
difference between consistent and inconsistent worlds, viz, that ~p is
true in a consistent world exactly in case p is not true in it, whereas
both p and ~p may be true in an inconsistent world, and at least one
of them is. Furthermore, the «V-formulations» of PI and its exten-
sions enable us to translate literally the semantic clauses into a
syntactical system. There is more behind this than just a technical
matter. Any semantics presupposes a logic, viz. the logic that defines
the meaning of the logical terms used in the semantical metalanguage.
In this paper I always used a semantical metalanguage (for PI and its
extensions) in which the meaning of the connectives is defined by PC.
To this logic corresponds the system V. It is then trivial that any
semantical clause expressed in the aforementioned metalanguage
corresponds literally to a V-wff: v(A)=1 corresponds to VA and
V(A)=0 to ~VA. All semantic clauses of the PC-semantics and
Pl-semantics are translated in this way into definitions or axioms of
VC and VI. The same holds for all Pl-extensions.('!) Consider:

(') Semantic characterizations of V and its extensions may be obtained as follows :
consider, e.g., the valuation functions of the PI*-semantics as defining an assignment to
pre-wffs, and extend it in such a way that it constitutes an suitable assignment to wffs
too.
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VI'AS1. Where A is not a variable, V~A=~VA,

and let VI' = VI+ VI'ASL. then we have kv A iff l5,v VA,

I leave it to the reader to formulate VI-extensions that correspond in
the same way to other Pl-extensions. Incidentally, it is trivial that any
Vi-extension determines (in the aforementioned way) one Pl-exten-
sion, although some Pl-extensions correspond to more than one
Vi-extension. (%) :

There is a further point which I think to be philosophically
important. Expressed vaguely, inconsistencies never occur at the
‘«highest level» ; however inconsistént some theory, it may always be
consistently described in a metalanguage. Let us illustrate this by VI.
Even if the world is inconsistent in that, for some p, both pand ~p are
true, we still may (and should — see below) define some «predicate»
‘true’ in such a way that we never have it that p is both true and false
(not true). Now, of course, one might define V in a redundant way in
PI too (Vp =4p), and in this way arrive at a logic in which Vp& ~ Vp
is not a contradiction. But still, it is completely trivial that we may
define a further term, say V°, that behaves consistently in that
VeVp& ~V°Vp is a logical falsehood, although V°Vp & V° ~Vp is

“not. Let me now show why one should introduce some notion of truth
— the name of course does not matter — that behaves consistently.

Suppose that both p and ~ p are true about some domain (true about
«the world», or derivable from some «mathematical» or «empirical»
theory). We shall adopt some paraconsistent logic in order to describe
this domain, in order to formulate a theory about it. However, we only
have a theory about some domain, we only have a description of some
domain, if some sentences about the domain are not derivable from
this theory. Notice that the 'not’ should be a strong negation here. We
have only a theory about some domain if some sentences are not
derivable from it in this sense of *derivable’ in which ’p is and is not
derivable’ is logically false. The point is that one may describe an"

{1%) Let VI® be the result of adding V ((p & ~p) >q) as an axiom to VI, We then have it
that A is a PC-theorem iff VA is a VI®-theorem, and that the latter is true iff VA is a
VC-theorem. Nevertheless, VI® is weaker than VC,as V ~p o ~ Vp is derivable in VC
but not in VI®. VC may be said to presuppose that the world is consistent, whereas VI®
may be said to presuppose that it is either consistent or trivial. This difference can be
expressed semantically, but it cannot be expressed syntactically by a purely proposi-
tional logic (not containing, e.g., the predicate V).




'PARACONSISTENT EXTENSIONAL PROPOSITIONAL L

incoh§istent domain, but that something may be called a desc¢
only if its metatheory is consistent. To put it in another wa
that the metatheory MT of «theory» T is incon'sistent,(':s
both derivable and not derivable from T, being both true
according to T). Then T is not a description of some. do
might be interesting in itself, and hence it might be im‘
describe it by MT. But MT will only be a (complete or in
description of T, if MT may be described consistently by
i.e. metatheory of MT. All this sounds quite old stuff. To
extent one might disagree with some of Popper’s views,
how one could disagree with his basic insight that only th
are informative that «forbid» something. (I return on:t
section 10). Incidently, it is clear without further argume
theory of truth connected with PI and its extensions in th
as Tarski’s theory of truth is connected with PC, is as’
inconsistent worlds allow it to be (the point has been mad
generally by da Costa).
I finally add a remark on the strong neg'mon Insome s
as PIC, 71is defined implicitly, in others, such as PV¥, :
explicitly. In the corresponding VI-extensions we get elth’ i
ble or as primitive:

DV_| V—ip=df~Vp.

It seems to me that this leads to the important remark that |
the strong negation in that ~Ip expresses that p is false (is no
or what you have), i.e. if ~Ip is asserted, then p cannot be col
asserted any more. Let us compare this with the negation in
such as PI*. PI* has the same ~— & — V — fragment as PC anc
sense contains PC. Hence ~(p& ~p) is a theorem of Pl
less, ~ is not the strong negation. The easiest way to se
comparing the PP-theorem ~(p & ~p) with ~1(p & ~Ip),
e.g., a theorem of Pv". lp VI*and VI" these correspond respes

9.1) V~(p& ~p)
9.2) ~(Vp&V 1p)
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Whereas (9.2) states that p and ~Ip are not bot true, (9.1) does not
state more than that ~(p & ~p) is a theorem. The only way to analyZe:
(9.1) further is to write it as V ~p V Vp, but this again has nothing to_
do with strong negation (as it even holds in VI). This shows that it is
somewhat misleading to call, as Routley (1979) does, the wif
~(p & ~p) ’Aristotle’s principle’, and that one should be careful with
drawing conclusions from the fact that this wif is a theorem of 4

paraconsistent logic (no reasonable reading of Aristotle agrees with\ :
the mere theoremhood of ~(p & ~p)). (*%)

10. Some philosophical considerations

In PC all connectives are truth-functions and the same holds for the
binary connectives in PI and its extensions. Negation, however, is not
a truth-function in PI (although the Pl-semantics is plainly truth-func-
tional). Yet, some occurences of negations, viz. those occurring in
front of compound wffs, behave truth-functionally in such Pl-exten-
sions as PI*, PI' and PI™. In my view the philosophical point to this is
the following. For any domain we think about, we may distinguish
between descriptions of «facts» of the domain on the one hand, and
(results of) «operations» on descriptions of facts on the other hand.’
By ’operations’ I mean mental operations of connecting in some way
or other statements about facts. I realize quite well that the distinction
is put forward in a naive guise, but I prefer to do so because it seems
to me that in this way my argument will be acceptable to everyone,
irrespective of his or her philosophical views on the distinction under
consideration. Given the distinction, it follows at once that negation
functions in PC as an operation, whereas negation does not in general
function as (the expression of) a mere operation in PI and its
extensions; yet, in some of the extensions some occurrences of
negations (see above) function as such.

('*) Routley (1979) also writes: «In its semantical formulation the principle asserts
that no statement is both true and false, that is, that it is never the case that 1{A. T) =1
and 1(A,T)=0, a point guaranteed by the bivalent features of the semantics.» This,
however, simply means that his semantics is a description (in the sense explained some
paragraphs ago in the next) of the logical system under consideration.
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The matter can perhaps best be illustrated by means of an example.
Consider a language in which we describe our observations in a given
domain. If our observational criteria are such that for any object a and
for any predicate P we are able to find out in a clearcut way, be it only
under certain conditions, whether or not the object has the property P,
then ~ Pa will simply be used to express that a has not that property.
Here negation functions as (the expression of) an operation, ~ Pa
stating that the fact expressed by Pa is not the case (ust as Pa& Qa
_ States that both the facts expressed by Pa and Qa are the case). There
" is no way in which a contradiction could ever arise in such a context (1
disregard problems concerning time for the sake of the example).
Suppose, however, that we do not dispose of unique criteria for
determining whether or not an object has a certain property, e.g.,
because the criteria are multiple or because the meanings of the
predicates of the language are related to each otherin such a way as to
lead, for some «observational» predicates P and Q, to a so-called
meaning postulate from which it follows that ~Pa s true whenever Qa
is true. In such cases it is quite possible that observations lead us to
the conclusion that both Pa and ~ Pa. It is clear at once then that ~ Pa
expresses a fact and is not the result of applying an operation on Pa.
Indeed, in the cases under consideration Pa and ~ Pa are accepted on
the basis of different observations, Hence, the negation in *~Pg’
cannot be an operation on Pa in the sense that the very criterion that
might lead us to the conclusion that Pa, has lead to a negative result;
for indeed, at least one criterion, be it direct or indirect, that was used
to check whether or not Pa, led to a positive result (from which Pa was
concluded). Incidently, it seems preferable in view of the preceding
result to describe the situation by saying that both the fact that a has
“property P and the fact that a has property ~P are the case, rather
than unnecessarily messing up our ontology by saying that the fact
that a has property P both is and is not the case.

I'have to add three further remarks. Even in languages in which the
strong negation occurs, we may have a multiplicity of observational
criteria for one and the same predicate, and the meanings of the
predicates may be related in the way indicated in the preceding
paragraph. However, as long as the descriptions of our observations
behave consistently, it may ‘be said that negation behaves as an
operation, for if we conclude, by whatever means, to either Pa or
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~Pa, then it may be said that some. criterion, however complex,
“would have lead to a positive, respectively negative result. The
second remark concerns the fact that p V ~p is a theorem of PI. As a
consequence, negation in PI functions partially as an operation in that
a negative result of a criterion to check for Pa will always lead to the
conclusion that ~ Pa (and vice versa). But this simply means that Pl
and its extensions do not admit all sets of observational criteria as
suitable (or well-defined); hence, if the set of observational criteria
leads to results incompatible with PI, we might be forced to move to a
still weaker logic. Finally, what about the truth-functional behaviour
of negations occurring in front of compound expressions in such
Pl-extensions as PI' or PI'? With respect to the present kind of
example the use of such logics may be best seen as follows. Suppose
that all elementary observational statements are expressed by primi-
tive sentences of the language (as in the ideal Wittgensteinian case) or
by negations of such. Even if the primitive sentences behave incon-
sistently, we may then, by rejecting the rule of replacement of
equivalents, EQ, decide to consider negations of compound sentences
as the result of operations on these sentences (as in PIY) or as
operations on related sentences (as in PI*). The expense is clear, and
the fact that all designers of paraconsistent systems came up with
negations that partially behave as operations, suggests that none of
them was aware of this expense.

It should be clear by now that contradictions may be true, as long as
a weak negation is involved. Also, it is not obvious that inconsistent
(non-trivial) theories may be replaced by consistent ones «of the same
richness», or that a set of observational criteria that lead to some
inconsistent observational reports, may be replaced by an equally
adequate set that leads to consistent observational reports only.
Hence the use of paraconsistent logics. There is, however, also an
expense at employing a weak negation as I shall now try to make
clear. )

I have already referred to the problem of falsification in section 9. It
is obvious that, where the tilde denotes the weak negation of some
paraconsistent logic (whether based on a relevant or a material
implication), ~p cannot be used to express that p is false, for the truth
of ~p does not logically exclude that p too is true. As a consequence.
we need either the strong negation or some term like V, in front of
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which negation functions as strong negation, to express that some
sentence is false. Hence the use of such paraconsistent logics as PI",
PI", VI (and its extensions), and PIC (and its extensions). In all such
logics the strong negation is such that it turns (strongly) inconsistent
sets of sentences into trivial such sets. This need not be the case for a
paraconsistent logic based on a relevant implication, but it is clear that
a strong negation should be added to such systems in order to express
syntactically that some sentence is false. Routley and Meyer disregard
this problem completely. Routley (1979) shows that «dialectical logic,
DKQ, has a classical truth definition», viz. formulated in the semanti-
cal metalanguage, but still it is impossible to state within languages
that have the structure of DKQ that some sentence is false.

The possibility of expressing syntactically the falsehood of a
sentence seems especially important with respect to the problem of
falsification. In the absence of a strong negation, no sentence will ever
lead to the rejection (under whatever conditions on auxiliary
hypotheses, etc.) of some theory T. Where & a is the conjunction of
the axioms of T, such logics as Routley and Meyer’s DL might enable
one to derive ~& o from some set of sentences, but ~& a does not
express that & a is false. (Notice that ~& o is derivable from any
T = <a, L>, whenever Cn¢ (o) is inconsistent.) Let me just give one
example of the way in which VI'might be interpreted in connection
with the problem of falsification. The axioms of T might &= considered
as given in the form Vp, and the so-called meaning relat. ..s as given
in such forms as V (Ax) o V(~Bx). The observational criteria might
be considered to lead to such conclusions as Vp or ~Vp. How
falsification arises in such cases is then obvious. It is easy to see that
the case is analogous for Pl-extensions that contain strong negation.
Especially the PIC-extensions seem attractive in this connection.

I add three further remarks. First, the typical VC-theorem
V ~p > ~Vp cannot be expressed in a theory T under the above
interpretation, as all theorems of T are of the form Vp. Next, even if
the underlying logic is P, it might be stated in a theory T that some
sentence (or predicate) behaves conéistently, e.g., where P is a
sentence, by a theorem of the form (P& ~P) >q. Finally, under an
interpretation as the above one, it turns out possible to falsify directly
a logically true sentence. Indeed, if e.g., the underlying logic of T is
VC, then the «acceptance» on observational grounds of both Vp and
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V ~p (for some sentence p) leads to the very negation of a theorem of
logic. Of course, several changes to T are possible ways out, but one
at hand is the transition from VC to some weaker VI-extension.

It seems to me that the preceding paragraphs lead to a conclusion
which goes far beyond the problem of paraconsistent logics, viz. that
it is the deviser of some theory T who has to specify the underlying
logic of T. The choice of an underlying logic determines indeed the set

“of consequences of T;itis Cng(a), and not the set a of axioms alone,

“that determines what the theory states. The underlying logic defines
the logical structure of reality as described (and describable) by a
given language and under the given observational criteria. In this
sense the logic has factual implications. Itis up to the deviser of some
theory, not to some logician, to determine what he intends the theory
to state. All the logician can do in this respect is to develop new logics,
starting from logical or extra-logical problems, and to show the
possible use of these logics.

11. Appendix

The proofs of the consistency of the axiomatic systems mentioned
in this article with respect to the corresponding semantic systems Gf
ok A, then a = A) are left to the reader. They all proceed as for PC.
The strong-completeness proofs (if al= A, then a- A) are obvious in
view of my (1980). T only mention, for each system, the properties of
the y €T (see lemma 6 of my (1980)).

For PI: :

1. A ey iff yHA.

2. For some A, A €Y

3. (AoB)eyiff A¢yorBeEy.

4, (A&B)eyiff Aeyand BEy.

5. (AVB)eyiff Aeyor BEy.

6. If A¢y, then ~A €Y.

For PI*: 1 — 6 plus

7%, If A€y, then ~~A €Y.

g*. If ~Aeyand ~Bey, then ~(A VB)Ey.
For PI*: 1 —6 plus
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7. ~~Aeyiff Aey.
8°. ~(AoB)eyiff Aeyand ~B €y.
. ~(A&B)eyiff ~Aeyor ~B€y.
10°. ~(AVB)eyiff ~A €yand ~B €y.
For PI': 1 — 6 plus
7. ~~Aeyiff ~Aey.
8. ~(ADB)eyiff (A>B)é&y.
9. ~(A&B)eyiff (A&B)&y.
10°. ~(AVB)eyiff (AVB)&y.
For PI°: 1—6 plus 9".
For PI™: 1 -6 plus 7¢, 8" — 10",
For PIC: | — 6 plus
7¢ TTAeyiff A¢y.
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