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Abstract

This paper concerns a (prospective) goal directed proof procedure for
the propositional fragment of the inconsistency-adaptive logic ACLuN1.
At the propositional level, the procedure forms an algorithm for final
derivability. If extended to the predicative level, it provides a criterion
for final derivability. This is essential in view of the absence of a positive
test. The procedure may be generalized to all flat adaptive logics.

1 The Problem

Inference relations for which there is no positive test abound in both everyday
and scientific reasoning processes.1 Adaptive logics are a means for characteriz-
ing such inference relations. The characterization has a specific metalinguistic
standard format. This format provides the logic with a semantics and with a
proof theory, and warrants soundness, completeness, and a set of properties of
the logic.2 The first adaptive logics were inconsistency-adaptive. The articu-
lation of other adaptive logics provided increasing insight into the underlying
mechanisms and required that adaptive logics were systematized in a new way.
This systematization is presented in [16] and will be followed here.

This paper is concerned with a specific problem in adaptive logics. I de-
scribe the problem in the sequel of this section. A substantiated motivation
for adaptive logics has been presented in many other papers ([5], [6], [7], [8],
[13], [38], etc.); repeating it here would leave no room for the results I want to
present. The first two sentences of this section summarize the motivation. I

∗Research for this paper was supported by subventions from Ghent University and from
the Fund for Scientific Research – Flanders, and indirectly by the Flemish Minister responsible
for Science and Technology (contract BIL01/80). I am indebted to Joke Meheus and Dagmar
Provijn for comments on a former draft. I am also indebted to the three referees for many
useful suggestions.

1A positive test is a systematic procedure that, for every set of premises Γ and for every
conclusion A, leads after finitely many steps to a “yes” if A is a consequence of Γ. Remark
that the consequence relation defined by classical logic is undecidable, but that there is a
positive test for it—see [26] for such matters.

2Only part of these results are written up, viz. in [17].
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shall, however, do my utmost to offer the reader a good idea of the functioning
of adaptive logics.

An especially important feature of adaptive logics is their dynamic proof
theory. This proof theory is intended for explicating actual reasoning—see [34]
for a historical example—a task that cannot be accomplished by definitions,
semantic systems, and other more abstract characterizations.

The dynamics of the proof theory results from the absence of a positive
test. More often than not, the dynamics is double. The external dynamics is
well known: as new premises become available, consequences derived from the
earlier premise set may be withdrawn. In other words, the external dynamics
results from the non-monotonic character of the consequence relation—the fact
that, for some Γ, ∆ and A, Γ ` A but Γ ∪ ∆ 0 A. The internal dynamics
is very different from the external one. Even if the premise set is constant,
certain formulas are considered as derived at some stage of the proof, but are
considered as not derived at a later stage. For any consequence relation, insight
into the premises is only gained by deriving consequences from them. In the
absence of a positive test, this results in the internal dynamics. The external
dynamics always entails an internal dynamics. The converse, however, does not
hold. The Weak consequence relation from [44] and [45]—see [23] and [24] for
an extensive study of such consequence relations—is monotonic. Nevertheless,
its proof theory necessarily displays an internal dynamics because there is no
positive test for it. Also, some logics for which there is a positive test, may
nevertheless be characterized in a nice way in terms of a dynamic proof theory—
see [15] on the pure calculus of the R-implication from [2].

Dynamic proofs differ in two main respects from usual proofs. The first
difference concerns annotated versions. Apart from (i) a line number, (ii) a for-
mula, (iii) the line numbers of the formulas from which the formula is derived,
and (iv) the rule by which the formula is derived (the latter two are the jus-
tification of the line), dynamic proofs also contain (v) a condition. Intuitively,
this is a set of formulas that are supposed to be false, or, to be more precise,
formulas the truth of which is not required by the premises.

The second main difference is that, apart from the deduction rules that allow
one to add lines to the proof, there is a marking definition. The underlying
idea is as follows. As the proof proceeds, more formulas are derived from the
premises. In view of these formulas, some conditions may turn out not to
hold. The lines at which such conditions occur are marked. Formulas derived at
marked lines are taken not to be derived from the premises. In other words, they
are considered as ‘out’. One way to understand the procedure is as follows. As
the proof proceeds, one’s insight into the premises improves. More particularly,
some of the conditions that were introduced earlier may turn out not to hold.

For any stage of the proof, the marking definition settles which lines are
marked and which lines are unmarked. This leads to a precise definition of
derivability at a stage. Notwithstanding the precise character of this notion, we
also want a more stable form of derivability, which is called final derivability.
The latter does not depend on the stage of the proof; nor does it depend on the
way in which a specific proof from a set of premises proceeds. It is an abstract
and stable relation between a set of premises and a conclusion. A different way
for putting this is that final derivability refers to a stage of the proof at which
the mark (or its absence) of a line has become stable. Final derivability should
be sound and strongly complete with respect to the semantics. For any adaptive
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logic AL, A should be finally derivable from Γ (Γ `AL A) if and only if A is a
semantic consequence of Γ (Γ ²AL A).

Consider a dynamic proof from a set of premises. At any point in time, the
proof will be finite. It will reveal what is derivable from the premises at that
stage of the proof. But obviously we are interested in final derivability. Whence
the question: what does a proof at a stage reveal about final derivability? As
there is no positive test for the consequence relation, there is no algorithm for
final derivability. So, there are at best certain criteria to decide, for specific A
and Γ, whether A is finally derivable from Γ.

What if no criterion enables one to conclude from the proof whether certain
formulas are or are not finally derivable from the premise set? The answer or
rather the answers to this question are presented in [10]. Roughly, they go as
follows. First, there is a characteristic semantics for derivability at a stage.
Next, it can be shown that, as the dynamic proof proceeds, the insight into the
premises provided by the proof never decreases and may increase.3 In other
words, derivability at a stage provides an estimate for final derivability, and, as
the proof proceeds, this estimate may become better, and never becomes worse.
In view of all this, derivability at a stage gives one exactly what one might
expect, viz. a fallible but sensible estimate of final derivability.4 At any stage of
the proof, one has to decide (obviously on the basis of pragmatic considerations)
whether one will continue the proof or rely on present insights.

Needless to say, one should apply a criterion for final derivability whenever
one can. This motivated the search for such criteria—see [10], [19] and [20]. Un-
fortunately, most of these criteria are complex and only transparent for people
that are well acquainted with dynamic proofs. Recently, it turned out that a
specific kind of goal directed proof offers a way out in this respect. The idea is
not to formulate a criterion, but rather to specify a specific proof procedure that
functions as a criterion. The proof procedure is applied to Γ `AL A. Whenever
the proof procedure stops, it is possible to conclude from the resulting proof
whether or not Γ `AL A. Preparatory work on the propositional fragment
of CL (classical logic) is presented in [21] and some first results on the proof
procedure for inconsistency-adaptive logics are presented in this paper.

The present paper is restricted to the propositional level. So, all references
to logical systems concern the propositional fragments only. At this level the
proof procedure forms an algorithm for final derivability: if the proof procedure
is applied to A1, . . . , An ` B, it always terminates after finitely many steps—see
Theorem 4. If, at the last stage of the proof, B is derived at an unmarked line,
then B is finally derivable from A1, . . . , An; if B is not derived at an unmarked
line, it is not finally derivable from A1, . . . , An. However, the proof procedure
may be extended to the predicative level and there provides a criterion for final
derivability if it terminates. The main interest of the procedure lies there.

The results presented in subsequent sections are not only interesting because
they form an important tool for adaptive logics. It has been shown for a number
of logics and logical mechanisms that they are characterized by an adaptive
logic. Moreover, this characterization led for several systems to an interesting

3More particularly, this insight increases if informative steps are added to the proof, where
“informative step” is clearly definable—see [10].

4This estimate is defined in terms of the proof theory, and the latter explicates actual
reasoning. So, the estimate should not be confused with approximations that may be obtained
by certain computational procedures.
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strengthening or variant. Among the finished results are [14], [18], [22] and
[50] for the consequence relations from [45], [23] and [24]; [36] and [35] for [51];
[40] for [1] and other logic based approaches to abduction (see [43]); [39] for
the notion of empirical progress from [31]; [37] for [41] and [28]; [30] and [9]
for default reasoning and circumscription respectively (see [3], [27] and [33]);
[49] and [48] for prioritized consequence relations. Work in progress concerns
default reasoning and the signed systems from [25]. For all logics and logical
mechanisms that can be characterized by an adaptive logic in standard format,
the results of the present paper can be extended in such a way that those
logics and logical mechanisms are provided, next to a semantics and a provably
sound syntactic characterization, with criteria for (final) derivability (and with
a decision method at the propositional level).

In Section 2, I briefly present the inconsistency-adaptive logic ACLuN1
and its dynamic proof theory. In Section 3, the goal-directed proof procedure is
applied to CL. This will make the matter easily understood by everyone. The
proof procedure for the adaptive logic ACLuN1 is spelled out in Section 4.

2 The Inconsistency-Adaptive Logic ACLuN1

The central difference between paraconsistent logics and inconsistency-adaptive
logics can easily be described in proof theoretic terms. In a (monotonic) para-
consistent logic some deduction rules of CL are invalid; in an inconsistency-
adaptive logic, some applications of deduction rules of CL are invalid.

The original application context that led to inconsistency-adaptive logics—
see [8]—is still one of the most clarifying ones. Suppose that a theory T was
intended as consistent and was formulated with CL as its underlying logic.
Suppose next that T turns out to be inconsistent. Of course, one will want
to replace T by some consistent improvement T ′. Typically, one does not just
throw away T , restarting from scratch. One reasons from T in order to locate
the inconsistency or inconsistencies and in order to locate constraints for the
replacement T ′. Needless to say, logic alone is not sufficient to find the justified
replacement T ′.5 However, logic is able to locate the inconsistencies in T . It
can provide one with an interpretation of T that is ‘as consistent as possible’.
Let me phrase this in intuitive terms. At points where T is inconsistent, some
deduction rules of CL cannot apply—if they did, the resulting interpretation
of T would be trivial in that it would make every sentence of the language a
theorem of T . But where T is consistent, all deduction rules of CL should apply.

An extremely simple propositional example will clarify the matter. Consider
the theory T that is characterized by the premise set {p,∼p ∨ r, q,∼q ∨ s,∼p}.
From these premises, r should not be derived by Disjunctive Syllogism. Indeed,
∼p ∨ r is just an obvious weakening of ∼p. If one were to derive r from the
premises, then, by the same reasoning, one should derive ∼r from p and ∼p ∨
∼r, which also is an obvious weakening of ∼p. However, if one interprets the
premises as consistently as possible, one should derive s from them, viz. by

5If T is a mathematical theory, more conceptual analysis will be required. The different
set theories that originated from Frege’s are a good example of this. If T is an empirical
theory, new factual data (observations and outcomes of experiments) may be required and
the theory needs to be reorganized. Usually the conceptual schema will be changed as a
result of the specific problem-solving process that removes the inconsistency—an extremely
interesting study in this respect is [29].
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Disjunctive Syllogism from q and ∼q ∨ s. Indeed, while the premises require p
to behave inconsistently (require p ∧ ∼p to be true), they do not require q to
behave inconsistently (they do not require q ∧ ∼q to be true).

As the matter is central, let me phrase it differently. The theory T from
the previous paragraph turns out to be inconsistent. As it was intended to
be consistent, it should be interpreted as consistently as possible. Given that
T is inconsistent, one will move ‘down’ to a paraconsistent logic—a logic that
allows for inconsistencies. If a formula turns out to be inconsistent on the
paraconsistent reading of T , one cannot apply certain rules of CL to it. Thus,
even on the paraconsistent interpretation of T , p ∧ ∼p is true. But consider
p ∧ (∼p ∨ r). Given the meaning of conjunction and disjunction, this formula
entails (p ∧ ∼p) ∨ r. According to CL, p ∧ ∼p cannot be true, and hence r
is true. However, the premises state that p ∧ ∼p is true. So, if one wants to
reason sensibly from these premises, one cannot rely on the CL-presupposition
that p ∧ ∼p is bound to be false. However, where the paraconsistent reading
of T does not require that a specific formula A behaves inconsistently, one may
retain the CL-presupposition that A is consistent, and hence apply CL-rules
where they are validated by this presupposition. Thus T affirms q ∧ (∼q ∨ s),
which entails (q ∧ ∼q) ∨ s. As T does not require q ∧ ∼q to be true, it should
be taken to be false and one should conclude to s.

The intuitive statements from the two preceding paragraphs are given a
precise and coherent formulation by inconsistency-adaptive logics.

An adaptive logic is characterized by the following triple:6

(i) a monotonic lower limit logic,
(ii) a set of abnormalities (characterized by a logical form),7 and
(iii) an adaptive strategy (specifying the meaning of “interpreting the premises

as normally as possible”).
Extending the lower limit logic with the requirement that no abnormality is
logically possible results in a monotonic logic, which is called the upper limit
logic.

Let me illustrate this by the specific inconsistency-adaptive logic ACLuN1.
In this paper, I shall only consider the propositional level of the logic and I shall
consider no other strategy than Reliability.

The lower limit logic of ACLuN1 is CLuN. This monotonic paraconsistent
logic is just like CL, except in that it allows for gluts with respect to negation—
whence the name CLuN. Axiomatically, CLuN is obtained by extending full
positive propositional logic with the axiom schema A∨∼A—see [11] for a study
of the full logics CLuN and ACLuN1, including the semantics. CLuN isolates
inconsistencies. Indeed, Double Negation, de Morgan rules, and all similar
negation reducing rules are not validated by CLuN. As a result, complex
contradictions do not reduce to truth functions of simpler contradictions.8 There

6In this paper I consider only flat adaptive logics. Other adaptive logics are the prioritized
ones, which are defined as specific combinations of flat adaptive logics—see [16].

7In my view, it is philosophically important that all formulas of a certain logical form are
abnormalities, and hence are taken to be false until and unless proven otherwise. Some flat
adaptive logics are described and studied as formula-preferential systems in [32]—see also—[4].
Ω is then any set of formulas. It is not clear whether this may be generalized to all adaptive
logics, but, by a somewhat nasty trick, all formula-preferential systems can be shown to be
characterized by an adaptive logic.

8For example, (p∧ q)∧∼(p∧ q) 0CLuN (p∧∼p)∨ (q ∧∼q) and ∼p∧∼∼p 0CLuN p∧∼p.
Of course, one still has (p ∧ ∼p) ∧ ∼(p ∧ ∼p) `CLuN p ∧ ∼p.
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are several versions of CLuN. In this paper I consider a version for which
classical negation is present in the language—I shall discuss this convention
below.

The set of abnormalities, Ω, comprises all formulas of the form A ∧ ∼A.
Extending CLuN with the axiom schema (A ∧ ∼A) ⊃ B results in the upper
limit logic, which is CL.

Finally, we come to the adaptive strategy. Below I shall often need to refer
to disjunctions of abnormalities, which I shall call Dab-formulas. From now on
an expression of the form Dab(∆) will refer to a disjunction of abnormalities;
in other words, Dab(∆) is the disjunction of the members of ∆, which is a
finite subset of Ω.9 Dab(∆) will be called a minimal Dab-consequence of Γ
iff Γ `CLuN Dab(∆) and there is no ∆′ ⊂ ∆ for which Γ `CLuN Dab(∆′).
If Dab(∆) is a minimal Dab-consequence of Γ and ∆ is not a singleton, the
premises require some member of ∆ to be true, but do not specify which member
is true. In view of this possibility, one needs to introduce an adaptive strategy.
One wants to interpret the premises “as normally as possible” (which for the
present Ω means “as consistently as possible”), but this phrase is ambiguous.
As indicated in (iii), an adaptive strategy disambiguates the phrase.

The Reliability strategy from [8]10 is the oldest known strategy, and the one
that is simplest from a proof theoretic point of view. I shall not consider any
other strategies in this paper. Let U(Γ) = {A | A ∈ ∆ for some minimal Dab-
consequence Dab(∆) of Γ} be the set of formulas that are unreliable with respect
to Γ. Below, I shall define Γ `ACLuN1 A, which will be read as “A is finally
ACLuN1-derivable from Γ”. The following Theorem, proved as Theorem 4.3
of [11], says in plain words that A is ACLuN1-derivable from Γ iff there is a
∆ such that A ∨ Dab(∆) is CLuN-derivable from Γ and no member of ∆ is
unreliable with respect to Γ.

Theorem 1 Γ `ACLuN1 A iff there is a ∆ ⊆ Ω such that Γ `CLuN A∨Dab(∆)
and ∆ ∩ U(Γ) = ∅.

The dynamic proof theory of any (flat) adaptive logic is characterized by
three (generic) rules, except of course that the rules RU and RC should refer to
the right lower limit logic. Let Γ be the set of premises as before. I now list the
official deduction rules.11 Immediately thereafter I shall mention a shorthand
notation that most people will find more transparent.

PREM If A ∈ Γ, one may add a line comprising the following elements: (i) an
appropriate line number, (ii) A, (iii) −, (iv) PREM, and (v) ∅.

RU If A1, . . . , An `CLuN B and each of A1, . . ., An occurs in the proof,
say at lines i1, . . . , in that have conditions ∆1, . . ., ∆n respectively,
then one may add a line comprising the following elements: (i) an
appropriate line number, (ii) B, (iii) i1, . . . , in, (iv) RU, and (v) ∆1 ∪
. . . ∪∆n.

9It can be shown that Γ `CL ⊥ iff there is a finite ∆ ⊂ Ω such that Γ `CLuN Dab(∆).
So, both expressions may be taken to define that Γ is inconsistent.

10This is the oldest paper on adaptive logics, but it appeared in a book that took ten years
to come out.

11Only RC introduces non-empty conditions. In other words, as long as RC is not applied,
the condition of every line is ∅.
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RC If A1, . . . , An `CLuN B ∨ Dab(Θ) and each of A1, . . ., An occurs in
the proof say at lines i1, . . . , in that have conditions ∆1, . . ., ∆n

respectively, then one may add a line comprising the following elements:
(i) an appropriate line number, (ii) B, (iii) i1, . . . , in, (iv) RC, and
(v) ∆1 ∪ . . . ∪∆n ∪Θ.

Where “A∆” abbreviates that A occurs in the proof on the condition ∆, the
rules may be phrased more transparently as follows:

PREM If A ∈ Γ: . . .
A∅

RU If A1, . . . , An `CLuN B: A1
∆1

. . .
An

∆n

B∆1∪...∪∆n

RC If A1, . . . , An `CLuN B ∨Dab(Θ): A1
∆1

. . .
An

∆n

B∆1∪...∪∆n∪Θ

While the deduction rules enable one to add lines to the proof, the marking
definition, which depends on the strategy, determines which lines are “in” and
which lines are “out”. For the Reliability strategy, we first need to define the
set Us(Γ) of formulas that are unreliable at a stage s of a proof. Let Dab(∆)
be a minimal Dab-formula at stage s of the proof iff, at that stage, Dab(∆) has
been derived on the condition ∅ and there is no ∆′ ⊂ ∆ for which Dab(∆′) has
been derived on the condition ∅.12 Let Us(Γ) =df {A | A ∈ ∆ for some minimal
Dab-formula Dab(∆) at stage s of the proof }.

Definition 1 Where ∆ is the condition of line i, line i is marked at stage s iff
∆ ∩ Us(Γ) 6= ∅. (Marking definition for Reliability)

Lines that are unmarked at one stage may be marked at the next, and
vice versa. Finally, I list the definitions that concern final derivability—the
definitions are identical for all adaptive logics.

Definition 2 A is finally derived from Γ at line i of a proof at stage s iff A is
derived at line i, line i is not marked at stage s, and any extension of the proof
in which line i is marked may be further extended in such a way that line i is
unmarked.

Definition 3 Γ `ACLuN1 A (A is finally ACLuN1-derivable from Γ) iff A is
finally derived at a line of a proof from Γ.

12The minimal Dab-formulas that occur in a proof at a stage should not be confused with
minimal Dab-consequences of the set of premises. At a stage s, a new minimal Dab-formula
may be derived, and the effect may be that a Dab-formula that was minimal at stage s− 1 is
not minimal at stage s. Whether some formula is a minimal Dab-consequence of the premises
is obviously independent of the stage of a proof from those premises.
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Remark that by “a proof” I mean (here and elsewhere) a sequence of lines
that is obtained by applying certain instructions. In the present context, this
means that each line in the sequence is obtained by applying a deduction rule
and that the marking definition was applied. Here is a very simple dynamic
proof.

1 (p ∧ q) ∧ t − PREM ∅
2 ∼p ∨ r − PREM ∅
3 ∼q ∨ s − PREM ∅
4 ∼p ∨ ∼q − PREM ∅
5 t ⊃ ∼p − PREM ∅
6 r 1, 2 RC {p ∧ ∼p} 9

7 s 1, 3 RC {q ∧ ∼q}
8 (p ∧ ∼p) ∨ (q ∧ ∼q) 1, 4 RU ∅
9 p ∧ ∼p 1, 5 RU ∅

Up to stage 7 of the proof, all lines are unmarked. At stage 8, lines 6 and 7
are marked because U8(Γ) = {p∧∼p, q ∧∼q}. At stage 9, only line 6 is marked
because U9(Γ) = {p ∧ ∼p}. It is easily seen that, if 1–5 are the only premises,
then the marks will remain unchanged in all extensions of the proof. So, r is
not a final consequence of Γ whereas s is a final consequence of Γ.

The convention on classical negation. As promised, I now discuss the
convention that the language contains classical negation, which will be written
as “¬” (or that the language contains ⊥ together with ¬A =df A ⊃ ⊥). In a
sense then, CLuN is an extension of CL. It has the full inferential power of
CL, ¬ functioning as the CL-negation, and moreover contains the paraconsis-
tent negation ∼. In the original application context, mentioned in the second
paragraph of this section, the premises belong to the ¬-free (and ⊥-free) frag-
ment of the language. Of course different application contexts are possible, but
even in the original application context the presence of ¬ is useful: it greatly
simplifies metatheoretic proofs and technical matters in general, and in no way
hampers the limitations imposed by the application context.13 As will appear
in Section 4, the presence of ¬ also greatly simplifies the prospective procedure
that will serve as a criterion for final derivability.

3 Prospective Proofs for Classical Logic

In this section I merely present an example: a prospective proof for p ⊃
(q ∧ s),¬(q ∨ r) `CL ¬p.14 As the proof is simple, I skip the rules as well
as the heuristic instructions—these are spelled out in [21]—and merely offer
some comments.

The first step introduces the main goal:
13By present lights, it is harmless as well as useful, for all adaptive logics, to extend the

language and the lower limit logic in such a way that all classical connectives belong to the
lower limit logic. This holds even if these connectives do not occur in the premises or in the
conclusions a user is interested in—see [12] for an example.

14The rules are listed in the next section. In order to avoid useless complications, I shall
write classical negation as ¬ even in the context of CL.
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1 [¬p]¬p GOAL

This step, which expresses the truism that ¬p can be obtained on the condition
that ¬p can be obtained, is meant to remind one that one is looking for the
formula that occurs in the condition, viz. ¬p. The purpose served by a condition
in prospective proofs is very different from the one in dynamic proofs—it is
‘prospective’ rather than ‘defeasible’. In view of the condition of line 1, one
introduces a premise from which ¬p may be obtained, and next analyses the
premise:

2 p ⊃ (q ∧ s) PREM
3 [¬(q ∧ s)]¬p 2 ⊃E

The prospective condition for 2 is empty for obvious reasons, and I shall write
such conditions invisibly. Line 3 illustrates a formula analysing rule: in view of
2, one would have ¬p if one had ¬(q ∧ s). As ¬(q ∧ s) cannot be obtained by
analysing a premise, one applies a condition analysing rule to ¬(q ∧ s):

4 [¬q]¬p 3 C¬∧E

The following steps require no comment:

5 ¬(q ∨ r) PREM
6 ¬q 5 ¬∨E
7 ¬p 4, 6 Trans

As the main goal is obtained on the empty condition at line 7, the proof is
completed.

It is easily seen that, in a proof for Γ `CL A, a formula B is derivable on
the condition ∆—with some notational abuse: [∆] B is derivable—just in case
Γ ∪∆ `CL B.

Some lines are marked in goal-directed proofs for CL. Unlike what was the
case in the previous section, these marks indicate that one should not try to
derive the members of the condition of marked lines. More details are presented
in the next section, where these marks will be called D-marks because they relate
to derivability—A-marks will relate to the adaptive character of the logic.

4 Prospective Proofs for ACLuN1

Prospective proofs for ACLuN1 have lines that contain two conditions:

i [∆]A . . . . . . Θ

A will be called the formula of the line. The prospective condition, ∆, is called
the D-condition. As in prospective proofs for CL, it contains the formulas that
one needs to derive in order to obtain A. The adaptive condition, Θ, will be
called the A-condition. It contains the abnormalities that should not belong
to U(Γ) in order for A to be derivable from the premises. The occurrence of
the above line i in an ACLuN1-proof from Γ warrants that Γ ∪ ∆ `CLuN

A ∨Dab(Θ)—see Theorem 5. In order to show that Γ `ACLuN1 G one needs a
line like the displayed one at which A = G, ∆ = ∅, and Θ ∩ U(Γ) = ∅.

To facilitate the exposition, I shall write [∆] AΘ to denote that A has been
derived on the D-condition ∆ and on the A-condition Θ, and I shall write AΘ
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when ∆ is known to be empty. Before describing the procedure, I shall present
the rules and some required definitions. Let ∗A denote the ‘complement’ of A,
viz. B if A is ¬B and ¬A otherwise.15

The following rules introduce premises or start new phases or subphases
of the proof. A-Goal and X-Goal are identical but are used in different con-
texts.

Prem If A ∈ Γ, introduce A∅.

Goal Introduce [G] G∅.

A-Goal Introduce [Dab(∆)]Dab(∆)∅.

X-Goal Introduce [Dab(∆)]Dab(∆)∅.

EFQ If A ∈ Γ, introduce [∗A]G∅.

We have seen that CLuN contains all of CL. The formula analysing rules
and the condition analysing rules for CL may be summarized by distinguishing
a-formulas from b-formulas (varying on a theme from [47]). To each formula
two other formulas are assigned according to the following table:

a a1 a2 b b1 b2

A ∧B A B ¬(A ∧B) ∗A ∗B
A ≡ B A ⊃ B B ⊃ A ¬(A ≡ B) ¬(A ⊃ B) ¬(B ⊃ A)
¬(A ∨B) ∗A ∗B A ∨B A B
¬(A ⊃ B) A ∗B A ⊃ B ∗A B
¬¬A A A

The formula analysing rules for a-formulas and b-formulas are respectively:16

[∆] aΘ

[∆] a1
Θ [∆] a2

Θ

[∆] bΘ

[∆ ∪ {∗b2}] b1
Θ [∆ ∪ {∗b1}] b2

Θ

For ACLuN1 we moreover need:

∼E
[∆]∼AΘ

[∆] ∗AΘ∪{A∧∼A} ¬∼E [∆]¬∼AΘ

[∆]AΘ

The rule ∼E expresses that ∼A entails ¬A on the condition that A ∧ ∼A is
false (because then A is false and hence ¬A is true). ¬∼E states that A is true
whenever ∼A is false; the converse obviously does not hold.

The condition analysing rules for a-formulas and b-formulas are respectively:

[∆ ∪ {a}]AΘ

[∆ ∪ {a1, a2}] AΘ

[∆ ∪ {b}]AΘ

[∆ ∪ {b1}] AΘ [∆ ∪ {b2}] AΘ

For ACLuN1 we moreover need:

C∼E
[∆ ∪ {∼B}]AΘ

[∆ ∪ {∗B}] AΘ C¬∼E
[∆ ∪ {¬∼B}] AΘ

[∆ ∪ {B}]AΘ∪{B∧∼B}

15Sometimes a double complement will be needed. Remark that ∗∗¬p is ¬p but that ∗∗¬¬p
is p, just like ∗ ∗ p.

16The rule to the left actually summarizes two rules: both [∆] a1
Θ and [∆] a2

Θ may be
derived from [∆] aΘ; similarly for the rule to the right and for the condition analysing rule to
the right below.
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For C∼E: if one can obtain ¬A, then one can obtain ∼A; for C¬∼E: if one can
obtain B, and B ∧ ∼B is reliable, then one can obtain ¬∼B.

To obtain a complete system one needs Trans and EM. Moreover, the deriv-
able rule EM0 and the permissible rule IC simplify the proof procedure.

Trans
[∆ ∪ {B}] AΘ

[∆′] BΘ′

[∆ ∪∆′] AΘ∪Θ′
EM

[∆ ∪ {B}] AΘ

[∆′ ∪ {¬B}] AΘ′

[∆ ∪∆′] AΘ∪Θ′

EM0
[∆ ∪ {¬A}]AΘ

[∆] AΘ IC [∆]Dab(Λ ∪ Λ′)Θ∪Λ′

[∆]Dab(Λ ∪ Λ′)Θ

That A is a positive part of another formula is recursively defined by the
following clauses:17

1. pp(A,A).

2. pp(A,¬∼A).

3. pp(∗A,∼A).

4. If pp(A, a1) or pp(A, a2), then pp(A, a).

5. If pp(A, b1) or pp(A, b2), then pp(A, b).

6. If pp(A,B) and pp(B, C), then pp(A,C).

A-marking (marking in view of the A-conditions, providing from the adap-
tive character of the logic) is taken over by the procedure below. D-marking
(marking in view of D-conditions) is governed by the following definition.

Definition 4 Where [∆]AΘ is derived at line i, line i is D-marked iff one of
the following conditions is fulfilled:

1. line i is not an application of a goal rule and A ∈ ∆,

2. for some ∆′ ⊂ ∆ and Θ′ ⊆ Θ, [∆′]AΘ′ occurs in the proof,

3. no application of EFQ occurs at a line preceding i and B,¬B ∈ ∆ for
some B,

4. no application of EFQ occurs at a line preceding i and, for some B ∈ ∆,
¬B∅ occurs in the proof.

If 1 is the case, the condition is circular; if 2 is the case, some (set theo-
retically) weaker condition is sufficient to obtain A. In the other two cases,
line i indicates a search path that can only be successful if the premises are
¬-inconsistent. Although it is not necessary to mark such search paths, it turns
out more efficient to postpone them to phase 1B—see below.

17Unlike what is done in [46] and [21], I do not introduce negative parts because this
complicates the predicative case. Clause 6 is only required in view of clauses 2 and 3.
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The procedure. Several variants are possible. To save some space I describe
a variant that leaves much choice to the person who constructs the proof and
hence may lead to rather inefficient proofs, but nevertheless warrants that all
steps are sensible with respect to the aim. I shall disregard infinite Γ.

A prospective ACLuN1-proof for A1, . . . , An ` G will consist of three
phases. In the first phase, one tries to obtain GΘ for some Θ. If this suc-
ceeds and Θ 6= ∅, one moves to phase 2 and tries to obtain Dab(Θ)Λ for some
Λ. If this succeeds and Λ 6= ∅, one moves on to phase 3 and tries to obtain
Dab(Λ)∅. If a phase terminates, one returns to the previous one. In phase 1,
there are two subphases: phase 1 starts with subphase 1A, and only if no other
step is possible one applies EFQ, which starts subphase 1B.

Each phase starts by applying a goal rule. In a phase, the members of the
D-conditions of unmarked lines of the phase are called the targets. The following
restrictions are important. Premises are introduced and formulas analysed iff a
target is a positive part of the formula of the added line. Condition analysing
rules are only applied to targets. A formula analysing rule is never applied
to a formula that does not have a premise in its path—analysing a goal is
provably a useless complication. Once [∆]AΘ occurs in the proof, one never
adds another line with that same formula, D-condition and A-condition (even if
the justification of the line is different). Finally, EFQ is only applied in subphase
1B.18 The restrictions are important because they define when the procedure
terminates (in a phase)—as suggested before, introducing more restrictions may
lead to more efficient proofs.

Let us consider the three phases and the conclusions that may be drawn
from them. During phases 2 and 3, a line may be A-marked (marked in view of
its A-condition). A phase terminates if no lines can be added in view of current
targets.

Phase 1. Phase 1 starts with [G] G, justified by the Goal rule.
Subphase 1A. Aim: to derive GΘ for some Θ. There are three possibilities:
(1.1) G∅ is derived. Then Γ `ACLuN1 G.
(1.2) GΘ is derived, say at line i: the procedure moves to phase 2 and later

returns to phase 1, at which point there are two possibilities:
(1.2.1) line i is not A-marked: Γ `ACLuN1 G.
(1.2.2) line i is A-marked: go on (aim: derive GΘ′ for some Θ′ + Θ).

(1.3) The procedure terminates and GΘ is not derived at an unmarked line for
any Θ: move to subphase 1B.

Subphase 1B. Aim: to derive G∅ by applications of EFQ as well as well of the
other CLuN-rules.19 If G∅ is derived, Γ `ACLuN1 G; otherwise Γ 0ACLuN1 G.

Phase 2. GΘ was derived in phase 1 for some Θ, say at line i. Phase 2 starts
by applying A-Goal in order to add [Dab(Θ)]Dab(Θ)∅. Aim: to derive Dab(Θ)Λ

for some Λ ⊆ Ω. There are three possibilities:
(2.1) Dab(Θ)∅ is derived: line i is A-marked; the procedure returns to phase 1.

18It can be shown that, if ¬ does not occur in the premises—see the second paragraph
of Section 2—then the premises cannot be ¬-inconsistent and hence phase 1B is useless. I
nevertheless include it here for the sake of completeness.

19The CLuN-rules are all rules except for ∼E and C¬∼E, which introduce an A-condition,
IC, which modifies the A-condition, and A-Goal and X-Goal which start from an A-condition.
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(2.2) Dab(Θ)Λ is derived for some Λ 6= ∅, say at line j. The procedure moves
to phase 3 and later returns to phase 2, at which point there are two
possibilities:
(2.2.1) line j is A-marked: go on (aim: derive Dab(Θ)Λ

′
for some Λ′ +

Λ).
(2.2.2) line j is not A-marked: line i is A-marked; the procedure returns

to phase 1.
(2.3) Phase 2 terminates, Dab(Θ)Λ not being derived at an unmarked line for

any Λ: line i is not A-marked and the procedure returns to phase 1.

Phase 3. GΘ was derived in phase 1 for some Θ, say at line i, and Dab(Θ)Λ

was derived in phase 2 for some Λ, say at line j. Phase 3 starts by applying
X-Goal in order to add [Dab(Λ)]Dab(Λ)∅. Aim: to derive Dab(Λ)∅ by the
CLuN-rules (see footnote 19), whence all lines of phase 3 have the A-condition
∅. There are two possibilities:
(3.1) Dab(Λ)∅ is derived: line j is A-marked; the procedure returns to phase 2.
(3.2) Phase 3 stops without Dab(Λ)∅ being derived: line j is not A-marked;

the procedure returns to phase 2.

Some fine tuning. Before moving to some examples, I shall present some
comments that concern the procedure as well as some comments that pertain
to the efficiency of the proofs.

EFQ is never applied in phase 2 or 3. This is justified by the following
consideration. EFQ can only be successfully applied in a proof for Γ ` G if
Γ is ¬-inconsistent. In that case, G∅ is derivable from the premises and will
be derived in phase 1B. Deriving any Dab-formula from Γ by applying EFQ
(possibly combined with other rules) is a useless detour.

Moreover, EFQ is only applied in phase 1 at points where no other rule can
be applied and, from that point on—that is, in subphase 1B—one adds only
lines with an empty A-condition to the proof, and hence never moves on to
phase 2. The reason for this is obvious: if the main goal can only be obtained
by EFQ, then it is derivable by the lower limit logic, viz. CLuN, and hence
there is no point in deriving it on some A-condition.

I now describe an apparently rather efficient variant of the procedure; it is
nearly identical for the three phases. Let me start with some general instruc-
tions. No line is added to the proof if it would at once be marked. At each
stage, one first tries to apply EM0, EM and Trans provided this leads to a line
being marked. IC is applied whenever possible.

If this does not lead to the aim of the phase, one proceeds in a strictly
goal directed way. More particularly, one considers the first formula in the last
unmarked condition (of the current phase) as the sole target. If the target
cannot be obtained from the premises, then obtaining the other members of the
same condition is useless anyway. If no step is possible in view of the target—
this means that the target is a dead end—one considers the first formula in the
next-to-last unmarked condition of the current phase as the target, and so on.

If it is possible to act in view of the target, one applies the rules in the
following order—remember what was said about positive parts. First, one tries
to apply a formula analysing rule to a formula that occurs at an unmarked line.
Next, one tries to introduce a premise. If all this does not enable one to derive
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the target and eliminate it from the D-condition by transitivity, one applies a
condition analysing rule to the target.

If the goal of the current phase cannot be obtained by strictly goal directed
moves (the ones described above), all members of conditions of unmarked lines of
the current phase are considered as targets, and one applies all rules, including
Trans and EM, whenever this enables one to obtain the goal (of the current
phase) on a new condition. One returns to strictly goal directed moves as soon
as possible.

Only if all this fails, and the current phase is phase 1, one applies EFQ and,
as said before, from there on only adds lines with an empty A-condition.

Some examples. Let us start with two simple examples. Consider first a
prospective proof for ∼p ∨ r, p ∧ ∼q, q `ACLuN1 r :

1 [r] r Goal ∅
2 ∼p ∨ r Prem ∅
3 [¬∼p] r 2 ∨E ∅
4 [p] r 3 C¬∼E {p ∧ ∼p} D7

5 p ∧ ∼q Prem ∅
6 p 5 ∧E ∅
7 r 4, 6 Trans {p ∧ ∼p}
8 [p ∧ ∼p] p ∧ ∼p A-Goal ∅
9 [p,∼p] p ∧ ∼p 8 C∧E ∅
10 [∼p] p ∧ ∼p 6, 9 Trans ∅
11 [¬r]∼p 2 ∨E ∅
12 [¬p] p ∧ ∼p 10 C∼E ∅
13 [¬r]¬p 11 ∼E {p ∧ ∼p}
14 [¬r] p ∧ ∼p 12, 13 Trans {p ∧ ∼p}
15 [¬r] p ∧ ∼p 14 IC ∅
The proof is successful: at line 7 r is derived on the empty D-condition and
on the A-condition {p ∧ ∼p}, whence line 4 is D-marked. In phase 2 p ∧ ∼p
turns out not to be derivable on any A-condition. So line 7 is unmarked and
∼p∨r, p∧∼q, q `ACLuN1 r. Incidently, the premise set is ∼-consistent, in which
case no line is ever A-marked.

Next, consider a prospective proof for ∼p, p ∨ q, p `ACLuN1 q :

1 [q] q Goal ∅
2 p ∨ q Prem ∅
3 [¬p] q 2 ∨E ∅
4 ∼p Prem ∅
5 ¬p 4 ∼E {p ∧ ∼p}
6 q 3, 5 Trans {p ∧ ∼p} A12

7 [p ∧ ∼p] p ∧ ∼p A-Goal ∅ D12

8 [p,∼p] p ∧ ∼p 7 C∧E ∅ D12

9 [p] p ∧ ∼p 4, 8 Trans ∅ D12

10 [¬q] p 2 ∨E ∅ D11

11 p Prem ∅
12 p ∧ ∼p 9, 11 Trans ∅
13 [¬(p ∨ q)] q EFQ ∅
14 [¬∼p] q EFQ ∅
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After q{p∧∼p} is derived at line 6, p ∧ ∼p∅ turns out to be derivable (line 12).
The procedure then sets out to derive q in a different way, which fails. C¬∨E is
not applied to the condition of line 13 because the resulting line would at once
be marked in view of line 3. C¬∼E cannot be applied to the condition of line
14 because this would introduce a non-empty A-condition. [¬p] q is not derived
by EFQ in view of line 10. So the proof terminates and ∼p, p∨ q, p 0ACLuN1 q.

Finally, a prospective proof for p,∼p ∨ s, r ⊃ t,∼p ∨ q,∼q `ACLuN1 s :

1 [s] s Goal ∅
2 ∼p ∨ s Prem ∅
3 [¬∼p] s 2 ∨E ∅
4 [p] s 3 C¬∼E {p ∧ ∼p}
5 p Prem ∅
6 s 4, 5 Trans {p ∧ ∼p} A20

7 [p ∧ ∼p] p ∧ ∼p A-Goal ∅
8 [p,∼p] p ∧ ∼p 7 C∧E ∅ D9

9 [∼p] p ∧ ∼p 8, 5 Trans ∅
10 [¬s]∼p 2 ∨E ∅
11 ∼p ∨ q Prem ∅
12 [¬q]∼p 11 ∨E ∅
13 ∼q Prem ∅
14 ¬q 13 ∼E {q ∧ ∼q}
15 ∼p 12, 14 Trans {q ∧ ∼q}
16 p ∧ ∼p 9, 15 Trans {q ∧ ∼q}
17 [q ∧ ∼q] q ∧ ∼q X-Goal ∅
18 [q,∼q] q ∧ ∼q 17 C∧E ∅
19 [q] q ∧ ∼q 13, 18 Trans ∅
20 [¬∼p] q 11 ∨E ∅

Here phase 3 stops. Line 16 is not A-marked and the procedure returns to phase
2; there line 6 is A-marked and the procedure returns to phase 1. There the
procedure will continue, aiming at deriving sΘ in phase 1 for some Θ + {p∧∼p},
but this will fail (and is bound to fail as the only open road is by EFQ whereas
the premises are ¬-consistent). So p,∼p ∨ s, r ⊃ t,∼p ∨ q,∼q 0ACLuN1 s

A computer program that implements the procedure can be downloaded from
http://logica.ugent.be/dirk/—the above proofs are produced by it. The data
file that goes with the program contains a set of instructive example exercises.

Metatheoretic matters. The procedure is an algorithm for Γ `ACLuN1 A
as it is discussed here, viz. at the propositional level and for finite Γ.

In order to facilitate the proof of some lemma’s, I now mention the CLuN-
semantics.20 Let S be the set of sentential letters, W the set of formulas, and
N the set of formulas of the form ∼A. The semantics proceeds in terms of an
assignment, v : S ∪ N 7→ {0, 1}, and a valuation, vM : W 7→ {0, 1}, determined
by a model M = 〈v〉. The valuation is defined as follows:

C1 Where A ∈ S, vM (A) = v(A).
C2 vM (¬A) = 1 iff vM (A) = 0.
C3 vM (∼A) = 1 iff vM (A) = 0 or v(∼A) = 1.

20The semantics for ACLuN1 can be found, e.g., in [11].
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C4 vM (a) = 1 iff vM (a1) = vM (a2) = 1.
C5 vM (b) = 1 iff vM (b1) = 1 or vM (b2) = 1.

M verifies A iff vM (A) = 1. M is a model of Γ iff it verifies all members of
Γ. A is valid iff all models verify A. Γ ²CLuN A iff all models of Γ verify A.
The semantics is obviously equivalent to a more standard one (not mentioning
a and b. That CLuN is sound and complete with respect to the semantics
is proved in [11] (for the predicative version, and without ¬, which however is
easily modified).

Remember that prospective proofs for CLuN are defined by the rules for
ACLuN1 save ∼E, C¬∼E, IC, A-Goal and X-Goal—these modify the A-
condition, or rely on it, whereas there is no A-condition in prospective proofs
for CLuN. So prospective proofs for CLuN are defined by the rules for CL
plus ¬∼E and C∼E (but without the A-condition). The proof of Theorem 2 is
a simpler variant of that for Theorem 4 below.

Theorem 2 If Γ is finite, every prospective proof for Γ `CLuN A terminates.

Theorem 3 If a prospective proof for Γ `CLuN G stops with G being derived,
then Γ `CLuN G. If a prospective proof for Γ `CLuN G stops without G being
derived, then Γ 0CLuN G.

Corollary 1 The prospective proof procedure for CLuN is a decision method
for CLuN-derivability.

The proof of Theorem 3 requires five pages, but is nearly identical to the
corresponding proof for CL, which is available in [21, pp. 126–131]. The only
changes to that proof concern those for accommodating ¬∼E and C∼E, and
the changes are completely obvious. The difficult bit is obviously with the
second statement in the theorem. This requires a ticking-off method as well as
a demonstration that a model of Γ that falsifies G may be constructed from the
set of lines of the form [∆] G that are neither marked nor ticked off. Central to
that demonstration is that, if the proof is terminated without G being derived,
then some CLuN-model falsifies a member of every such ∆ and falsifies G, and
every such model is a model of Γ. The proof method is new and deserves being
republished, but I need the allowed space for the rest of the metatheory.

Lemma 1 pp(A,B) iff pp(∗A, ∗B).

Proof. The left–right direction is proved by an induction on the length of the
recursion. For the basis, we have to consider the cases where pp(A,B) holds
because of the first three clauses:
Clause 1: then B is A and ∗A is ∗B, whence pp(∗A, ∗B) by clause 1.
Clause 2: pp(∗A, ∗B) is warranted by clause 3 and the fact that ∗ ∗A is A.
Clause 3: pp(∗A, ∗B) is warranted by clause 2 and the fact that ∗ ∗A is ∼A.

For the recursive steps, we have to consider:
Clause 4.1: if A is ¬¬B, then both ∗A and ∗B are ¬B, whence pp(∗A, ∗B) is
warranted by clause 1.
Clause 4.2: if B is an a-formula that is not of the form ¬¬C, then ∗B is the
b-formula of the same row of the table on page 10; it is easily seen from that
table that clause 5 warrants pp(∗A, ∗B).
Clause 5: if B is an b-formula, then ∗B is the a-formula of the same row of
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the table on page 10; it is easily seen from that table that clause 4 warrants
pp(∗A, ∗B).
Clause 6: pp(A,B) holds because there is a C such that pp(A,C) and pp(C, B);
by the induction hypothesis pp(∗A, ∗C) and pp(∗C, ∗B) and hence pp(∗A, ∗B)
by clause 6.

The proof of the right–left direction is similar.

Let us extend the positive part function as follows: pp(A, Γ) iff pp(A, B) for
some B ∈ Γ.

Lemma 2 If [B1, . . . , Bn]A{C1∧∼C1,...,Cm∧∼Cm} is derived in a prospective proof
for Γ `ACLuN1 G in a phase starting with [G′] G′,21 then A is G′ or pp(A, Γ),
pp(∗Bi,Γ ∪ {∗G′}) for every Bi (1 ≤ i ≤ n), and pp(∼Ci, Γ ∪ {∗G′}) for every
Ci (1 ≤ i ≤ m).

Proof. By an induction on the length of the prospective proof. The basis
is formed by an application of the rules Goal, A-Goal or X-Goal, leading to
[G′] G′. Obviously A is G′ and pp(∗Bi, ∗G′). For the induction step, I only
consider a few cases.

Rule Prem: pp(A,Γ).
Rule EFQ: A is G′ and pp(∗B, Γ).
Formula analysing rules for a-formulas: where the rule is applied to a for-

mula A′, pp(A′, Γ) by the induction hypothesis and the restriction (see the
heading “The procedure”) that a formula analysing rule can only be applied to
an A′ that has a premise in its path. As A is a1 or a2, and pp(a,Γ) by the
induction hypothesis, pp(A, a), and hence pp(A, Γ).

Formula analysing rules for b-formulas: where the rule is applied to a for-
mula A′, pp(A′, Γ) by the induction hypothesis and the restriction (see the
heading “The procedure”). If A is b1, pp(A,A′) and hence pp(A,Γ); moreover
the newly introduced Bi is ∗b2, pp(b2,Γ) and hence pp(∗Bi,Γ). Similarly if A
is b2.

Rule ∼E: where the rule is applied to a formula A′, say ∼D, pp(A′, Γ). As A
is ∗D, pp(A,A′), and hence pp(A,Γ). The newly introduced Ci∧∼Ci is D∧∼D
and hence pp(∼Ci, Γ).

Rule C¬∼E: the newly introduced Bi is obtained from ¬∼Bi and pp(∗¬∼Bi,
Γ∪{∗G′}) by the induction hypothesis; ∗¬∼Bi is ∼Bi and pp(∗Bi,∼Bi). Hence
pp(∗Bi,Γ∪{∗G′}). The newly introduced Ci∧∼Ci is Bi∧∼Bi and pp(∼Ci,Γ∪
{∗G′}).

The other cases are left to the reader.22

Theorem 4 If Γ is finite, every prospective proof for Γ `ACLuN1 G terminates.

Proof. Every line of a prospective proof for Γ `ACLuN1 A has the form
[B1, . . . , Bn]A{C1∧∼C1,...,Cm∧∼Cm} (n ≥ 0 and m ≥ 0). I shall show that A,
B1, . . . , Bn and {C1 ∧ ∼C1, . . . , Cm ∧ ∼Cm} belong to specific sets that are
defined by Γ and G.

In view of on Lemma 2, each of the following holds true:
(i) Bi ∈ {D | pp(∗D, Γ ∪ {∗G′})} for every Bi (1 ≤ i ≤ n).

21So G′ is either G or the Dab-formula introduced by A-Goal or the Dab-formula introduced
by X-Goal.

22Condition analysing rules: pp(∗a1, ∗a) in view of Lemma 1 and pp(a1, a).
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(ii) Ci ∧ ∼Ci ∈ {D ∧ ∼D | pp(∼D, Γ ∪ {∗G′})} for every Ci (1 ≤ i ≤ m). A is
G or pp(A,Γ) or A is G′ and [G′]G′ is introduced by the rule A-Goal or by the
rule X-Goal.
(iii) If G′ is introduced by A-Goal, it has the form E ∧∼E and is a member of
the condition of a line from phase 1, whence G′ ∈ {D∧∼D | pp(∼D,Γ∪{∗G})}.
(iv) If G′ is introduced by X-Goal, it has the form E∧∼E and is a member of the
condition of a line from phase 2, whence G′ ∈ {D∧∼D | pp(∼D, Γ∪{¬(F∧∼F ) |
pp(∼F, Γ ∪ {∗G})})}.

If Γ is finite, all sets mentioned in the previous paragraph are finite. It
follows that there are only finitely many ‘triples’ [∆] AΘ.

In view of the restrictions mentioned sub “The procedure”, a ‘triple’ [∆] AΘ

can be derived at most once23 in the same prospective proof, whence every
prospective proof for Γ `ACLuN1 G terminates.

Theorem 5 If [∆]AΘ is derived at a line in a prospective proof from Γ, then
Γ ∪∆ `CLuN A ∨Dab(Θ).

Proof. By an obvious induction on the length of the prospective proof. Basis: an
application of the Goal rule is justified by Γ∪{G} `CLuN G. For the induction
step, every rule has to be considered. I consider only one case as an example.

Case ∼E. Suppose that [∆]∼AΘ occurs in the proof. By the induction
hypothesis

Γ ∪∆ `CLuN ∼A ∨Dab(Θ) .

This holds iff
Γ ∪∆ `CLuN (∼A ∨ (A ∧ ¬A)) ∨Dab(Θ) ,

which entails
Γ ∪∆ `CLuN (¬A ∨ (A ∧ ∼A)) ∨Dab(Θ) ,

which holds iff

Γ ∪∆ `CLuN ¬A ∨Dab(Θ ∪ {A ∧ ∼A}) ,

which justifies that [∆]¬AΘ∪{A∧∼A} is added to the prospective proof.

In proof of the following lemma, we need the depth at which a subformula
A of B is nested in B. Let † be a variable for ¬ and ∼ and let ] be a variable
for the binary connectives. The function d(A,B) is defined by the following
clauses: (i) if A is not a subformula of B, then d(A, B) = 0, (ii) d(A,A) = 1,
(iii) if d(A, B) > 0, then d(A, †B) = d(A,B) + 1, (iv) if d(A,B) + d(A,C) > 0,
then d(A,B]C) = d(A,B) + d(A,C) + 2.

Lemma 3 If M = 〈v〉 is a CLuN-model, vM (A) = vM (∼A) = 1, and hence
v(∼A) = 1, and the CLuN-model M ′ = 〈v′〉 is exactly as M except that
v′(∼A) = 0, then

(∗) If vM ′(B) < vM (B), then pp(∼A,B); if vM ′(B) > vM (B), then pp(¬∼A,B).

23Most such triples cannot be derived in a prospective proof for Γ `ACLuN1, but the point
is that no others can.
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Proof. Suppose that the antecedent is true. I shall prove (∗) by an induction on
the depth of ∼A in B. From (∗) follows that vM ′(B) = vM (B) if (but not only
if) neither pp(∼A,B) nor pp(¬∼A,B).

The basis is formed by the cases where d(∼A,B) ≤ 1. If d(∼A,B) = 0, then
vM ′(B) = vM (B); if d(∼A,B) = 1, then B is ∼A. In both cases (∗) holds. For
the induction step we have eight cases.

Case 1: B is an a-formula and vM ′(B) < vM (B); it follows that vM ′(a1) <
vM (a1) or that vM ′(a2) < vM (a2); if vM ′(a1) < vM (a1), then pp(∼A, a1) by the
induction hypothesis, and hence pp(∼A,B); similarly if vM ′(a2) < vM (a2).

The proof of cases 2–4 is analogous to that of case 1: case 2: B is an a-
formula and vM ′(B) > vM (B); case 3: B is an b-formula and vM ′(B) < vM (B);
case 4: B is an b-formula and vM ′(B) > vM (B).

Case 5: B is ¬C and vM ′(B) < vM (B); then vM ′(C) > vM (C); by the
induction hypothesis pp(¬∼A,C); hence pp(∼A,B).

Case 6: B is ¬C and vM ′(B) > vM (B); analogous to case 5.
Case 7: B is ∼C, where C is not A, and vM ′(B) < vM (B); as v′(∼C) =

v(∼C), it follows that vM ′(C) > vM (C); by the induction hypothesis pp(¬∼A,C);
hence pp(∼A,B).

Case 8: B is ∼C, where C is not A, and vM ′(B) > vM (B); analogous to
case 7.

Theorem 6 If Γ `CLuN Dab(∆) and Γ 0CLuN Dab(∆′) for every ∆′ ⊂ ∆,
then pp(∼A,Γ) for every A ∧ ∼A ∈ ∆.

Proof. Suppose that the antecedent is true, that A ∧ ∼A ∈ ∆, and that
pp(∼A, Γ) is false.

Let Dab(∆) be (A ∧ ∼A) ∨ (B1 ∧ ∼B1) ∨ . . . ∨ (Bn ∧ ∼Bn). Remark that
Γ ∪ {¬(B1 ∧ ∼B1), . . . ,¬(Bn ∧ ∼Bn} `ACLuN1 A ∧ ∼A whence pp(∼A,Γ ∪
{¬(B1 ∧ ∼B1), . . . ,¬(Bn ∧ ∼Bn)}) by Theorem 6.

As Γ 0ACLuN1 Dab(∆′) for every ∆′ ⊂ ∆, there is a CLuN-model of Γ that
verifies A ∧ ∼A and falsifies every Bi ∧ ∼Bi (1 ≤ i ≤ n). More precisely, let
M = 〈v〉 be such a model for which v(∼Bi) = 0 for every Bi. There obviously
is such a model: if vM (Bi) = 1, then vM (∼Bi) = 0 whence v(∼Bi) = 0; if
vM (Bi) = 0, then vM (∼Bi) = 1 even if v(∼Bi) = 0.

Let M ′ = 〈v′〉 be exactly as M except that v′(∼A) = 0. Unlike M , M ′

falsifies A∧∼A. As pp(∼A, Γ) is false by the main supposition, vM ′(C) ≥ vM (C)
for all C ∈ Γ in view of Lemma 3. Hence M ′ is a model of Γ. Moreover, as
v′(∼Bi) = 0 for every Bi (1 ≤ i ≤ n), M ′ falsifies every Bi∧∼Bi. It follows that
M ′ is a model of Γ that falsifies Dab(∆), which contradicts the main supposition.

Theorem 7 If Γ `CLuN G ∨ (A1 ∧ ∼A1) ∨ . . . ∨ (An ∧ ∼An) and Γ 0CLuN ∆
for every ∆ ⊂ {G,A1 ∧ ∼A1, . . . , An ∧ ∼An}, then, G{A1∧∼A1,...,An∧∼An} is
derivable in every prospective proof for Γ `ACLuN1 G.

As the proof of the theorem requires many pages, I can only present an
outline. There are some provable things for which I offer no demonstration,
for example, that the order in which certain rules are applied has no effect on
whether the goal is derivable in the proof. I start by outlining the proof of the
following lemma:
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Lemma 4 If [B, C1, . . . , Cn]A can be derived in a prospective CLuN-proof
from Γ, and A is not the Goal, then [∗A,C1, . . . , Cn] ∗ B can be derived in
a prospective CLuN-proof from Γ in which ∗B is a target.

The proof proceeds by an induction on the number of applications of Trans
and EM that lead to [B, C1, . . . , Cn] A.

First the basis. If A is not the goal of the proof, then pp(A, Γ) by Lemma 2
(more precisely, by the corresponding lemma for CLuN). So [B, C1, . . . , Cn]A
was obtained from at least one premise. [B,C1, . . . , Cn] A can be obtained
from a single premise D by formula analysing rules and condition analysing
rules (and possibly by EM0) iff D has a ‘conjunctive normal form’ of which∨{∗B, ∗C1, . . . , ∗Cn, A} is a conjunct.24 But then [B,C1, . . . , Cn] A can be ob-
tained from a premise iff [∗A,C1, . . . , Cn] ∗ B can be obtained from the same
premise.

For the induction step, consider first Trans.
Case 1: [{B} ∪∆ ∪ Θ]A is obtained by Trans from [{B, E} ∪∆]A and [Θ] E.
By the induction hypothesis [{∗A,E} ∪∆] ∗B can be obtained. From this and
[Θ] E follows [{∗A} ∪∆ ∪Θ] ∗B by Trans.
Case 2: [{B}∪∆∪Θ] A is obtained by Trans from [{E}∪∆] A and [{B}∪Θ]E.
By the induction hypothesis, both [{∗A} ∪∆] ∗ E and [{∗E} ∪ Θ] ∗ B can be
obtained, and from these follows [{∗A} ∪∆ ∪Θ] ∗B by Trans.

Next consider EM.
Case 1: [{B}∪∆∪Θ]A is obtained by EM from [{B,C}∪∆] A and [{∗C}∪Θ] A.
By the induction hypothesis, both [{∗A,C} ∪∆] ∗ B and [{∗A} ∪Θ]C can be
obtained. From this follows [{∗A} ∪∆ ∪Θ] ∗B by Trans.
Case 2: [{B}∪∆∪Θ]A is obtained by EM from [{C}∪∆] A and [{B, ∗C}∪Θ] A.
Completely analogous to case 1.

I now outline the proof of the theorem. Let a line i of a prospective proof
be a descendant of a line j iff i is j or j belongs to the path of i.

Suppose that the antecedent of Theorem 7 is true. Let X abbreviate G ∨
(A1∧∼A1)∨. . .∨(An∧∼An). The supposition entails that Γ is ¬-consistent—it
it were not, Γ `CLuN G would obtain, which contradicts the supposition. So
we can safely disregard EFQ in what follows.

The first line in the CLuN-proof for Γ `CLuN X contains the following
formula-with-condition:

[X] X . (1)

In view of the presupposition, the thus started proof is bound to end with a line
at which X is derived.

Let us neglect what was said under the heading “Some fine tuning” and
apply the procedure in its crude (more permissive) form. This enables us to
apply C∨E to the condition of (1) and to the condition of the resulting lines
until we obtain a proof that contains n + 1 lines on which are derived:

[G]X
[A1 ∧ ∼A1]X
. . .

24It is not required that the disjuncts of the conjuncts are literals, whence I use the quo-
tation marks; however, the ‘conjunctive normal form’ must be obtained by the standard
transformations, in as far as they are CLuN-valid, for obtaining a CNF.
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[An ∧ ∼An] X .

Let these lines be called the basic lines of proof, and let the present stage of the
proof be called the divorced stage.
Fact 1 X can be derived in such a way that every descendant of a line of the
divorced stage is a descendant of a basic line.25

In other words, X, which can be derived in the proof, can be derived from
the basic lines. To see this, suppose that, due to the precise location of the
parentheses in X, [(A1 ∧ ∼A1) ∨ (A2 ∧ ∼A2)] X also occurs in the proof at
this point, viz. at line i, that pp((A1 ∧ ∼A1) ∨ (A2 ∧ ∼A2), Γ), and that [∆] X
is a descendant of line i. It is easily seen that pp(A1 ∧ ∼A1, Γ), and that
the proof leading from line i to [∆] X can be transformed in such a way that
[∆∪{¬(A2∧∼A2)}]X is a descendant of [A1∧∼A1] X. Incidentally, [∆] X can
be obtained from [A2 ∧ ∼A2] X and [∆ ∪ {¬(A2 ∧ ∼A2)}] X by EM.

Let us return to the divorced stage and extend it in such a way that (i) every
descendant of a line of the divorced stage is a descendant of a single basic line,
and that, with this restriction, (ii) every descendant of every basic line is derived.
This will lead to a set of descendants of [G] X, say [∆0

1] X, . . . [∆0
m0

] X, to a set
of descendants of [A1 ∧ ∼A1] X, say [∆1

1] X, . . . [∆1
m1

] X, and so on up to a set
of descendants of [An ∧ ∼An]X, say [∆n

1 ] X, . . . [∆n
mn

] X. Let us call the thus
obtained stage, the isolationist stage of the proof. The formulas-with-condition
of the form [∆i

j ] X will be called the resolution lines.
Fact 2 The [. . .] G that can be derived in a prospective proof for Γ `CLuN G,
are exactly [∆0

1]G, . . . , [∆0
m0

]G. The [. . .] A1 ∧ ∼A1 that can be derived in a
prospective proof for Γ `CLuN A1∧∼A1 are exactly [∆1

1] A1∧∼A1, . . . , [∆1
m1

] A1∧
∼A1. And so on for the other Ai ∧ ∼Ai.

Fact 3 For every ∆i
j (1 ≤ i ≤ m and 1 ≤ j ≤ mi), ∆i

j 6= ∅.
If some ∆0

j were empty, X would have been derived at the isolationist stage.
Hence, in view of Fact 2, G would be derivable in the prospective proof for
Γ `CLuN G. But then, in view of Theorem 3, Γ `CLuN G, which contradicts
the main supposition.
Fact 4 X can be derived by applications of EM and Trans from the resolution
lines.

To see this, remark that EM and Trans are the only rules that have two
‘premises’. As these rules do not introduce any new conditions, their results
cannot lead to further applications of Prem, of formula analysing rules, or of
condition analysing rules.

Let us extend the isolationist stage with applications of EM and Trans until
X is derived in the proof. This stage of the proof will be called the final stage.
Fact 5 The line at which X is derived at the final stage is a descendant of
every basic line.

Indeed, if this line was only a descendant of some basic lines, then the
disjunction of the conditions of those lines would be CLuN-derivable from Γ,
which contradicts the main supposition.

Of course not all resolution lines are required to obtain X by applications
of Trans and EM at the final stage. Let a sufficient selection of resolution lines

25Premise lines and their descendants are not descendants of any lines of the divorced stage.
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be a set of resolution lines that is sufficient to obtain X by EM and Trans. In
view of Fact 5:
Fact 6 Every selection of resolution lines that is sufficient to obtain X contains
a descendant of each basic line.

Fact 7 X can be derived from the resolution lines by applications of EM alone.
Consider a sufficient selection of resolution lines and suppose that Trans can

be applied to [∆i
j ] X and [∆k

l ]X. It follows that X ∈ ∆i
j or X ∈ ∆k

l ; suppose
X ∈ ∆k

l . The application of Trans then leads to [∆i
j ∪∆k

l − {X}] X. However,
this line is D-marked in view of the presence of [∆i

j ] X. So no useful line for
deriving X can be obtained from applying Trans to resolution lines or to lines
obtained from two resolution lines by EM.

Let a sufficient selection of resolution lines be clean iff EM cannot be applied
to two lines of the selection that are descendants of the same basic line.
Fact 8 There is a clean sufficient selection of resolution lines.

Indeed, all [∆k
l ]X that are descendants of the same basic line were derived

at the isolationist stage. If lines i and j are descendants of the same basic line,
and line k is obtained by EM from i and j, then k occurs in the isolationist
stage and hence can be selected instead of i and j.
Fact 9 For every [∆0

i ] X in a clean sufficient selection, and for every B ∈ ∆0
i ,

there is a [∆j
k] X in the sufficient selection for which j 6= 0 and ∗B ∈ ∆j

k.
Consider a clean sufficient selection. Every member of the condition of every

line in the selection has ultimately to be eliminated by EM. So if B ∈ ∆j
i for

some [∆j
i ]X in the selection, then ∗B ∈ ∆k

l for some [∆k
l ] X in the selection,

and k 6= j in view of Fact 8. So if B ∈ ∆0
i , then ∗B ∈ ∆k

l for some k 6= 0.
Fact 10 In a prospective proof for Γ `ACLuN1 G, [∆0

1] G
∅, . . . , [∆0

m0
]G∅ can

all be derived. (See Fact 2.)
I now come to the final part of the proof. The thus far described prospective

proof for Γ `CLuN G∨ (A1 ∧∼A1)∨ . . .∨ (An ∧∼An) will henceforth be called
the CLuN-proof. I shall derive conclusions from it for a prospective proof for
Γ `ACLuN1 G, henceforth called the ACLuN1-proof.

Let the following formulas

[∆0
i ∪ {B}]X (2)

[∆j
k ∪ {∗B}] X (3)

belong to a clean sufficient selection of resolution lines and B /∈ ∆0
i and ∗B /∈ ∆j

k.
So [∆0

i ∪ {B}] X is a descendant of the basic line [G] X, j 6= 0 by Fact 9, and
hence [∆j

k ∪ {∗B}]X is a descendant of the basic line [Aj ∧ ∼Aj ]X. Applying
EM to them results in

[∆0
i ∪∆j

k] X . (4)

As (2) occurs in the CLuN-proof,

[∆0
i ∪ {B}] G∅ , (5)

can be derived in the ACLuN1-proof in view of fact 10.
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Case 1. pp(Aj∧∼Aj , Γ). In the CLuN-proof, the premise of which Aj∧∼Aj

is a positive part was introduced, and the subsequent moves can be (if necessary)
so reorganized that [∆j

k ∪ {∗B}] Aj ∧ ∼Aj is obtained, whence (3) results by
Trans from this and the basic line [Aj ∧ ∼Aj ] X.

As [∆j
k ∪ {∗B}] Aj ∧ ∼Aj can be derived in the CLuN-proof, Lemma 4

warrants that

[∆j
k ∪ {¬(Aj ∧ ∼Aj)}]B∅

can be derived in the ACLuN1-proof, in which B is a target—see (5). Hence
one can also derive the following two

[∆j
k ∪ {¬Aj}] B∅ (6)

[∆j
k ∪ {¬∼Aj}] B∅ (7)

by C∨E. From (7) follows (8) by C¬∼E; from (8) and (6) follows (9) by EM;
from (9) and (5) follows (10) by Trans—compare (10) to (4).

[∆j
k ∪ {Aj}]B{Aj∧∼Aj} (8)

[∆j
k]B{Aj∧∼Aj} (9)

[∆0
i ∪∆j

k] G{Aj∧∼Aj} (10)

Case 2. Not pp(Aj ∧ ∼Aj , Γ). Hence C∧E was applied in the CLuN-proof
to the resolution line [Aj ∧ ∼Aj ] X, resulting in [Aj ,∼Aj ]X. If not pp(Aj , Γ),
then further condition analysing rules were applied to Aj . In this case the lines
may be reorganized in such a way that a line

[C1, . . . , Cm,∼Aj ] X (11)

has been obtained (together with similar lines) by condition analysing rules from
[Aj ,∼Aj ] X, that m + 1 lines, viz.

[Θ1] C1, . . . , [Θm] Cm, [Θ0]∼Aj (12)

were (together with similar lines) obtained in view of the targets of (11), and
that (3), viz. [∆j

k∪{∗B}] X, is obtained by Trans from the lines in (12); in other
words ∆j

k ∪ {∗B} = Θ1 ∪ . . . ∪Θm ∪Θ0.
Let us now move to the ACLuN1-proof. Every line mentioned in (12) is

derivable in it, but now with ∅ as its A-condition. There are two subcases.
Subcase 2.1: ∗B ∈ Θ0. Then one can obtain [Θ0 − {∗B} ∪ {¬∼Aj}] B∅ in

view of Lemma 4 and the fact that B is a target—see (5) (and compare with
case 1). From there one can obtain [Θ0 − {∗B} ∪ {Aj}] B{Aj∧∼Aj}. Condition
analysing rules will be applied to Aj , and lead (among others) to [Θ0 −{∗B} ∪
{C1, . . . , Cm}] B{Aj∧∼Aj}—compare with (11). Relying on all but the last item
of (12), now each with the A-condition ∅, one obtains [Θ0 − {∗B} ∪Θ1 ∪ . . . ∪
Θm] B{Aj∧∼Aj} by m applications of Trans as in the CLuN-proof. In other
words, as ∆j

k ∪ {∗B} = Θ1 ∪ . . . ∪Θm ∪Θ0, one obtains [∆j
k] B{Aj∧∼Aj}. This

corresponds to obtaining (9) in case 1. From there we proceed as in case 1.
Subcase 2.2: ∗B /∈ Θ0, and hence ∗B ∈ Θ1 ∪ . . . ∪ Θm. One basically

proceeds as in the previous case, except that one selects an arbitrary D ∈ Θ0

and derives [Θ0 − {D} ∪ {¬∼Aj}] ∗D∅; indeed, ∗D is bound to be a target
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because ∗D is bound to occur in the condition of another resolution line of the
clean sufficient selection in order for D to be eliminated by EM. From there one
obtains [Θ0 − {D} ∪ {A}] ∗D{Aj∧∼Aj}. To Aj analysing rules are applied as in
subcase 2.1, and, relying on all but all but the last item of (12), now each with
the A-condition ∅, one obtains [Θ0 − {D} ∪ Θ1 ∪ . . . ∪ Θm] ∗D{Aj∧∼Aj} by m
applications of Trans as in the CLuN-proof. As ∗B ∈ Θ1 ∪ . . .∪Θm and B is a
target in view of (5), one next obtains [Θ0 ∪Θ1 ∪ . . .∪Θm − {∗B}] B{Aj∧∼Aj},
which is [∆j

k] B{Aj∧∼Aj} as in subcase 2.1. From there we proceed as in case 1.

Both case 1 and case 2 lead to a similar situation. In the CLuN-proof
we eliminated a resolution line, and hence at most all resolution lines that are
descendants of a specific basic line, in the example [Aj ∧∼Aj ] X, and this led to
(4). That this can be done in the CLuN-proof warrants that, in the ACLuN1-
proof, (10) can be obtained and its A-condition contains the abnormality that
occurred in the D-condition of that basic line, in the example Aj ∧ ∼Aj .

Moreover we arrived at a new ‘clean sufficient selection’, in which (10) re-
places (2) and (3). In this selection, (10) is a descendant of basic line [G] X; it
easily seen that, for every B ∈ ∆0

i ∪∆j
k, there is a [∆j′

k′ ]X in the new sufficient
selection for which ∗B ∈ ∆j′

k′ and j′ 6= 0 (compare this to Fact 9).
By repeating the reasoning for all basic lines, G{A1∧∼A1,...,An∧∼An} is ob-

tained in the ACLuN1-proof.
A possible worry removed. Cases 1–2 are not the only ones if the clean

minimal selection contains a resolution line that is a descendant of a basic line
[Aj ∧ ∼Aj ] X and was obtained by applying C∼E to [Aj ,∼Aj ] X, resulting in
[Aj ,¬Aj ] X. However, this is impossible: if it were the case, then

Γ `CLuN G ∨ (A1 ∧ ∼A1) ∨ . . .

∨(Aj−1 ∧ ∼Aj−1) ∨ (Aj ∧ ¬Aj) ∨ (Aj−1 ∧ ∼Aj−1) ∨ . . . ∨ (An ∧ ∼An)

and hence also

Γ `CLuN G ∨ (A1 ∧ ∼A1) ∨ . . .

∨(Aj−1 ∧ ∼Aj−1) ∨ (Aj−1 ∧ ∼Aj−1) ∨ . . . ∨ (An ∧ ∼An) .

which contradicts the main supposition. So this ends the outline of the proof of
the Theorem 7.

Theorem 8 For all finite Γ and for all G, the procedure forms a decision
method for Γ `ACLuN1 G.

Proof. In view of Theorem 4, every started phase terminates, and the procedure
terminates. So I only have to show that the conclusions drawn during the
different phases of the procedure are correct. Let us proceed backwards.

Phase 3. For some Θ, GΘ was derived at line i in phase 1, for some Λ,
Dab(Θ)Λ was derived at line j in phase 2, [Dab(Λ)]Dab(Λ)∅ was introduced by
X-Goal, and one tries to obtain Dab(Λ)∅. In view of Theorem 7, Dab(Λ)∅ will
be derived iff it is derivable.26 There were two possibilities:
(3.1) Dab(Λ)∅ is derived. It follows that Γ `CLuN Dab(Λ) and hence that
Λ ∩ U(Γ) 6= ∅, whence line j is justly A-marked.

26Even Theorem 3 warrants this, as the A-conditions are uniformly empty in phase 3.
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(3.2) Phase 3 stops without Dab(Λ)∅ being derived. For all one knows, it is
possible that Λ ∩ U(Γ) = ∅. So line j should not be A-marked.

Phase 2. For some Θ, GΘ was derived at line i in phase 1, [Dab(Θ)]Dab(Θ)∅

was introduced by A-Goal, and one tries to obtain Dab(Θ)Λ for some Λ. There
were three possibilities:
(2.1) Dab(Θ)∅ is derived. Line i is justly A-marked (analogous to (3.1)).
(2.2) For some Λ 6= ∅, Dab(Θ)Λ is derived at line j. After moving to phase 3:
(2.2.1) Line j is A-marked. As Λ ∩ U(Γ) 6= ∅, it is compatible with all one
knows that Θ∩U(Γ) = ∅. So line i is not A-marked. One continues in phase 2,
trying to derive Dab(Θ)Λ

′
for some Λ′ + Λ.27

(2.2.2) Line j is not A-marked. So Γ `CLuN Dab(Θ∪Λ) and Γ 0CLuN Dab(Λ),
whence Θ ∩ U(Γ) 6= ∅. So line i is justly A-marked.
(2.3) When phase 2 terminates, Dab(Θ)Λ is not derived on an unmarked line
for any Λ. In view of Theorem 7 and of what was said sub (3.1), it follows that
there is no Λ for which Γ `CLuN Dab(Θ∪Λ) and Λ∩U(Γ) 6= ∅. It follows that
Θ ∩ U(Γ) = ∅. So line i is justly A-unmarked.

Phase 1. Subphase 1A. After [G] G was introduced, one tries to derive
GΘ for some Θ. There were three possibilities:
(1.1) G∅ is derived. Then Γ `ACLuN1 G in view of Theorem 5.
(1.2) GΘ is derived at line i. After moving to phase 2, there are two possibili-
ties:
(1.2.1) Line i is not A-marked. So Θ∩U(Γ) = ∅—see (2.3). Hence Γ `ACLuN1

G.
(1.2.2) Line i is A-marked. It is possible that GΘ′ is derivable for some
Θ′ + Θ.28 So one goes on looking for such a GΘ′ .
(1.3) The procedure terminates and GΘ is not derived at an unmarked line for
any Θ. In view of Theorem 7, GΘ was derived, for all Θ, whenever Γ `CLuN

G ∨ Dab(Theta) for which there is no Θ′ ⊂ {G} ∪ Θ such that Γ `CLuN ∆.
Moreover, all lines at which a GΘ was derived have been justly marked. So, in
view of Theorem 1, Γ `ACLuN1 G unless if Γ is ¬-inconsistent, in which case
Γ `ACLuN1 G can be demonstrated by EFQ.

Subphase 1B. One tries to derive G∅ by applications of EFQ as well as well
of the other CLuN-rules. In view of Theorem 3, if Γ is inconsistent, then G∅ is
derived iff Γ `ACLuN1 G.

5 In Conclusion

The ‘defeasible’ conditions that occur in dynamic proofs of adaptive logics sug-
gested a kind of dynamic proofs with ‘prospective’ conditions. This led to a
specific form of goal directed proofs. Later, these goal directed proofs turned
out to provide a proof procedure that forms an algorithm for final derivability
at the propositional level. As remarked in Section 1, the central interest of the
procedure is that it provides a criterion at the predicative level if it stops.

The dynamic proofs explicate actual reasoning. The prospective proofs do
not, but there is an algorithm for turning them into standard dynamic proofs
(by reordering and replacing lines). So, after finding out that some formula

27If Λ′ ⊇ Λ, then Λ′ ∩ U(Γ) 6= ∅ and hence a line at which Dab(Θ)Λ
′

would be derived
would be A-marked anyway.

28Compare footnote 27 for the case in which Θ′ ⊇ Θ.
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is derivable at a stage from the premises, one may switch to the goal directed
format in order to find out whether the formula is finally derivable. If a decision
is reached, one may transform the result to a regular dynamic proof, if desired.
After this, the proof may proceed and, if a further interesting formula is derived
at a stage, one may again switch to the goal directed format to settle its final
derivability.

Given the present standard characterization (from [16]) of flat adaptive log-
ics, some minimal changes to the aforementioned rules will result in a prospective
procedure for any other adaptive logic. Basically, one replaces the rules that
pertain to the abnormalities—in the case of ACLuN1, the rules containing the
paraconsistent negation ∼.

While these replacements are straightforward, further research is required
for the predicative level. Devising sensible rules is unproblematic—the relevant
research was finished. However, more work is needed to improve the efficiency
of the procedure and to avoid infinite loops whenever possible. It is easily seen
that known techniques from tableau methods and resolution methods may easily
be transposed to avoid infinite loops in prospective proofs.29
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